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Abstract

One of the most profound mysteries in the fundamental physics which has puzzled scientists

for almost a century is the nature of dark matter. It is hypothesized to makes up 25%

of the universe’s energy density, however, a direct detection of the dark matter remains

hypothetical so far. Due to the strict constraints placed by experimental null results on

heavier particles (GeV) such as WIMPS, axions and hidden photons have emerged as a

leading dark matter candidate. Both are sufficiently low-energy to behave as a coherent wave

with macroscopic occupation number (unknown frequency or mass), and on rare occasion

convert into a single photon via electro-magnetic interactions with normal matter. Current

dark matter experiments operate a microwave cavity held at cryogenic temperature and use

a linear amplifier operating near the standard quantum limit (SQL) to measure the signal

power. While these amplifiers provide a big boost in the signal-to-noise ratio at sub GHz

range, the noise power linearly increases and signal power plummets at higher frequency.

In order to make the search tenable, quantum enhanced search combined with new cavity

techniques are required to bring down the detector noise and improve the dark matter signal.

In this thesis, I report the development of multiple complimentary techniques using su-

perconducting qubits to speed up the dark matter search. First, we demonstrated a new

quantum measurement technique of counting photons generated by the dark matter in a

microwave cavity. By measuring only the field amplitude, the qubit is able to evade the

SQL. With repeated quantum non-demolition (QND) measurements of the cavity photons

and applying a hidden Markov model, we reduce the noise to 15.7 dB below the quantum

limit. Based on the measured background we set a new exclusion limit on hidden photon

dark matter. Second, using a superconducting qubit to prepare the cavity in a Fock state

and stimulate the emission of a photon from dark matter wave. By initializing the cavity in

|n⟩ = 4 Fock state, we demonstrate a 2.5× (4.0 dB) improvement in the signal rate, taking

into account the detection efficiency. Combining these two results in a 19.7 dB improvement

xiii



in signal-to-noise ratio over the conventional detection methods, speeding up the dark matter

search by a factor of 10, 000. The measured background sets a new exclusion limit on hidden

photon search in a previously unexplored mass range. Lastly, we demonstrate a high quality

factor photonic bandgap cavity which is compatible with large magnetic field. The measured

quality factor is almost 50 times higher than a conventional copper cavity with Q = 104 at

these frequencies and 50% higher than the axion quality factor. A coherent integration of

all these will greatly speed up the dark matter search in the future.
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Chapter 1

Introduction

Our universe is full of mysteries. Each phenomenon has its own origin story. Each element

interacts with its surrounding in a different way. Since the dawn of era, we humans, being

curious in nature have explored and formulated theories to explain phenomenon occurring

around us. There is numerous evidence from all over the world that the move towards a

rational understanding of nature began in the fields of astronomy, optics and mechanics

around 10th century BCE onwards. While a certain group of individuals were trying to

understand the biological phenomenon occurring on the earth like evolution, others were

trying to venture out and observe things outside the earth, in outer space. We have made

a lot of progress in our understanding of nature in the past 400-500 years both on and

outside the earth, at nanometer and galactic scales. And we have seen major upheavals in

physics models since then, from geocentric to heliocentric, ether to vacuum, and classical to

quantum. While the history of physics is an interesting topic in itself, let’s come back to the

modern times and examine where we stand in our understanding of nature and its governing

principles.

In the last 50 years or so, we have made tremendous progress to unify various theories

which sought to explain all the “elementary” particles known at the time in a consistent

framework known as Standard Model (SM) of particle physics. It has undergone intense

experimental scrutiny over the years, yet every test has been testament to its success, in-

cluding the discovery of Higgs boson in 2012, last remaining particle predicted by the SM.

However, the “ordinary matter” explained by SM constitutes only 5% of the mass in the

universe. According to “standard cosmological model”, the remaining 95% constitutes the

ΛCDM, where Λ stands for dark energy and CDM stands for cold dark matter. But, we

do not know what either dark energy or dark matter are made of. Current and decades of

past astronomical observations do inform us about their presence and how they behave on
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galactic and extra-galactic scales. Dark energy appears to be everywhere, behaving like the

opposite of gravity. It has been hypothesised to account for the accelerated expansion of the

vast region of empty space between galaxy clusters. Any further discussion of dark energy

is beyond the scope of this thesis.

On the other hand, we have been able to infer the existence of dark matter only from

the gravitational effect it seems to have on visible matter. It does not interact with the

electromagnetic force and appears to be uniformly spread throughout galaxies. Observations

tell us that we are flying into a headwind of dark matter, which passes through us all the

time at about 200 km/s without leaving a trace. Still, it is a subject of immense theoretical

and experimental interest because there is a strong evidence that it is non-baryonic (not

made of atoms) and thus, could act as a hypothetical extension to the SM. If detected, it

would interact very weakly with everything in the SM and would be produced abundantly

in the early universe, satisfying all the properties of dark matter. One thing that all the

observations don’t tell us is the mass of dark matter particle. There are constraints on the

mass depending on the model you trust but the parameter space is huge, which makes its

search challenging.

Another field which has seen an explosive growth in the last decade is quantum computing

and quantum information science. The idea of a quantum computer was first proposed by

Richard Feynman and Yuri Manin to simulate things a classical computer could not feasibly

do. However, the techniques and technology developed to interact and control these quantum

systems is proven to be very useful to probe fundamental physics which are otherwise limited

by laws of quantum mechanics. One of the most promising candidates “superconducting

qubit” is at the forefront of this computing revolution. It is developed on the circuit-QED

platform which is easy to scale and study rich physical systems allowing users full control

over the properties of Hamiltonian. These nanometer scale objects form the back-bone of

my PhD research and I am really excited to share all the interesting techniques and results

obtained during this journey, which would help speed up the dark matter searches in the
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microwave frequency range.

I am going to leave you with a few beautiful images captured by some of the most

sensitive pieces of equipment ever built, which provide direct evidence for the existence of

dark matter.
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Figure 1.1: Structure formation in the universe. Thousands of small galaxies appear
across this view. Their colors vary. Some are shades of orange, while others are white.
Most appear as fuzzy ovals, but a few have distinct spiral arms. In front of the galaxies
are several foreground stars. Most appear blue, and the bright stars have diffraction spikes,
forming an eight-pointed star shape. There are also many thin, long, orange arcs (“banana
shaped”) that curve around the center of the image which appear at multiple position due
to “Gravitational lensing”. Dark matter bends the light causing the object to appear
multiple times, but it’s the same object. Image credits: NASA JWST.
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Figure 1.2: Cosmic microwave background. The detailed, all-sky picture of the infant
universe created from nine years of WMAP data. The image reveals 13.77 billion year old
temperature fluctuations (shown as color differences) that correspond to over-densities where
gravitational potential wells formed by the dark matter lay the seeds for the formation of
galaxies. The signal from the our Galaxy was subtracted using the multi-frequency data.
This image shows a temperature range of ± 200 microKelvin. Image credits: NASA /
WMAP Science Team.
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Figure 1.3: Galaxy rotation curve. Rotation curve of spiral galaxy Messier 33 (yellow
and blue points with error bars), and a predicted one from distribution of the visible matter
(gray line). The discrepancy between the two curves can be accounted for by adding a dark
matter halo surrounding the galaxy. Image credits: Wikipedia.
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1.1 Detecting Dark matter in the lab

Without going into too much detail 1, let me discuss the current state of affairs of the

terrestrial dark matter experiments and how we are trying to detect them. We are interested

in two well motivated dark matter candidates - axions and hidden photons which have

compelling cosmological origin stories. An axion haloscope consists of an extremely cold

microwave cavity, large magnetic field, and a low noise microwave amplifier. If the frequency

of the cavity is tuned in resonance with the axion mass then it will convert into a photon

with a very small but finite probability. This photon causes an oscillating EM field inside the

cavity and the power coming out is amplified using an amplifier before the digitized signal

is displayed. For a typical set of experimental parameters at 5GHz, the expected signal

power Psig ∼ 5 × 10−24W! In comparison, the total noise power of a cavity in a dilution

refrigerator with a physical temperature of T ∼ 60mK is PN ∼ 10−20W. It is larger than

Psig by a factor of 103. This signal-to-noise ratio (SNR) plummets as we move to search for

axions at higher frequencies. It is mainly due to three reasons:

1. Noise power keeps on increasing linearly with the frequency, overwhelming the signal.

2. Detector volume shrinks to meet the resonance condition (V ∝ ν−3).

3. Q-factor decreases at higher frequency due to anomalous skin depth effect.

1.2 Thesis Overview

In this thesis, I am going to demonstrate how we can use superconducting qubits and photonic

bandgap cavities to overcome the challenges mentioned above. It is an attempt to describe

how a simple device such as a qubit brings quantum advantage to dark matter experiments.

I have tried to keep the discussion informal at times to not bore the readers with too much

details but I will try to include relevant references whenever appropriate. In Chapter 2,

1. Details in Chapter 2.
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I describe the motivation for dark matter candidates we are interested in and how they

interact via EM force to produce a detectable signal in the lab. Next, I will explain the

superconducting devices such as qubits, in particular transmon and 3D cavities in Chapter

3. I will describe the interaction between the two and how to operate and characterize

the complete Hamiltonian once the device is mounted in a dilution refrigerator. I will also

demonstrate how a qubit allows universal control on the cavity, though only to prepare Fock

states as a part of this thesis. In Chapter 4, I explain the various sources of noise and how to

quantify them in a real experiment to understand their origin and quantify their contributions

in the SNR. In particular, I discuss a quantum noise limited amplifier technology made out

of superconducting circuit elements and its operation and characterization in a readout chain

connected to the qubit. In Chapter 5, I will explain how we can harness the quantum non-

demolition interaction to build a single photon counter with false positive counts 1300× lower

than the standard quantum limit (SQL). In Chapter 6, I will discuss the stimulated emission

technique by preparing the cavity in a large n-photon Fock state to enhance the signal. I will

explain the concept and the experimental protocol to realize this experiment. I will present

a successful demonstration of enhancement by preparing cavity in up to |n⟩ = 4 Fock state.

Later, I characterize the source of background events and conduct a dark matter search for

hidden photons and exclude candidates in an unexplored parameter space. In Chapter 7, I

will present a novel cavity technique for axion haloscope which has a quality factor > 106 and

is compatible with large magnetic fields. I will briefly discuss the photonic bandgap structures

and design consideration for achieving desired performance of an axion detection cavity. New

results at cryogenic temperatures are reported with a photonic bandgap haloscope and JPA

to conduct an axion search with magnet ramped up to 10T. In the end, I conclude by

putting all the pieces together and how they fit in the grand vision of future dark matter

experiments.
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Chapter 2

Dark matter and axion cosmology

Having convinced you that dark matter is worth studying, in this chapter, I will describe

the two very well motivated candidates which are interesting to us - axions and hidden

photons. Both are sufficiently low-energy to behave as a coherent wave with macroscopic

occupation number, and have compelling cosmological origin stories1–5. I will describe their

conversion mechanism into photons and how it can be detected in the lab. Next, I will

discuss the challenges with current dark matter experiments and how we can overcome them

with a collaborative effort called SQuAD.

2.1 Axion and hidden photons

Axion is a classical example of “two birds with stone”, which solves the long standing charge-

parity (Strong CP) problem in the SM and account for dark matter if produced in the right

conditions at the early stages of universe. The strong CP problem refers to the conservation

of charge-parity in quantum chromodynamics (QCD) which is a theory of strong forces. The

charge-parity violation is allowed in the strong interactions, which would manifests itself as

a measurable electric dipole moment (EDM) of the neutron. The degree of CP violation in

QCD is proportional to angle θ which sets the scale of neutron EDM to be O(1). However,

current experimental constraints of the neutron EDM indicate that θ ≤ 10−10 i.e., QCD is

perfectly CP-conserving within one part in ten billion. Also, the violation of CP symmetry

is a subject of great theoretical interest because of the observed asymmetry between matter

and anti-matter in the universe.

In 1977, theorists Robert Peccei and Helen Quinn6,7 proposed a solution to the strong

CP problem by postulating θ to be a dynamical field instead of a number. This means

adding a new field- the axion field - to the SM that couples to the strong nuclear force in the
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same way as θ. In SM, symmetries lead to forces between particles, force “communicates”

the symmetry from place to place between particles and, the force is a field. Quantum

mechanics associates a particle with every field (e.g., the photon for the EM field). Thus,

to add the axion to the SM, we introduce a new symmetry, called the Peccei-Quinn (PQ)

symmetry, which is a global axial U(1) symmetry.

Introduction of the PQ symmetry corresponds to introducing a new bosonic field beyond

the single Higgs boson of the SM. It is represented by the angular direction of the potential.

At the phase transition temperature, where the symmetry is spontaneously broken, a pseudo

Nambu-Goldstone8,9 is generated. This particle of the spontaneously broken PQ symmetry

is the axion10,11. Frank Wilczek named the axion after a brand of laundry detergent because

it “cleaned up” a problem.

The hidden photons (HP) have a slightly different origin story. They could be produced

after inflationary period, and are allowed to kinetically mix with the photons. It makes their

detection possible and would be a viable candidate to constitute the dark matter component

in the universe and explain the anisotropies in the CMB spectrum.

2.1.1 Interaction with Axions

The axion does not interact only with quarks and gluons but also with other particles in the

SM. However, these interactions must be very weak for the axion to have evaded detection

so far. The interaction with photons can be expressed as

L ⊃ −1

4
gaγγ aFµν F̃µν = gaγγ aE ·B (2.1)

where gaγγ is the axion’s coupling strength to photons, γ (i.e., to electromagnetism), a

represents the axion field, F(F̃) is the electromagnetic field strength tensor (and its dual).

As a consequence of the addition of axion field, the Maxwell’s equation of electromagnetism
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are modified as

∇ · E = ρ− gaγγ∇a ·B

∇×B− Ė = j + gaγγ(ȧB+∇a× E)

(2.2)

where ρ and j are the ordinary charge and current, while the additional terms correspond to

the axion-induced charge and current densities, respectively. The spatial coherence length

of the oscillation axion field (a) is large because the momentum spread determined by the

galactic escape velocity is small, ∆v ∝ 10−3c. It is approximately 1 km for 1 µeV, and is

inversely proportional to the axion mass. Therefore, ∇a ≈ 0 is valid in this experiment,

and thus, only the time-dependent current source term is in effect. In 1983, Pierre Sikivie

proposed a promising detection technique12 using this remaining source term, i.e., the axions

are converted into photons in the presence of a magnetic field as illustrated in Fig. 2.1.

Figure 2.1: Principe of axion conversion. A classical strong magnetic field generates
a sea of virtual photons with which axions interact to be converted to real photons. The
corresponding Feynman diagram is also shown. The axion de Broglie wavelength is much
larger than the detector sizes, enabling coherent conversion within the detectors. Image
credits: Semertzidis et. al.13

Using the fact that E = −∂A
∂ t and integration by parts, the axion current density can be

expressed as

Lax ∼ Jax · E =
∂

∂t
(gaγγ aB0) ·A (2.3)

Assuming the observed dark matter density is composed solely of axions, a classical scalar
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field well approximates the axion DM which is very uniform with its energy density stored

in harmonic oscillators. Thus, the energy density contained in the axion field is related to

the density of dark matter

ρDM =
1

2
m2

a a
2 (2.4)

Substituting Eq. 2.4 into Eq. 2.3 and evaluating the time derivative of the oscillating axion

field, yields the generated current density in terms of the DM abundance

Jax(t) = gaγγ
√
2 ρDMB0 e

ιmat (2.5)

Eq. 2.3 informs us that in the presence of a large static magnetic field B0, a homogeneous

oscillating axion field induces an electric field oscillating at the same frequency νa = mac
2/h,

with maximum amplitude

E0 ∼ gaγγ B0 a (2.6)

2.1.2 Interaction with hidden photons

In this case, the dominant interaction is realized through the kinetic mixing between ordinary

photons Aµ and hidden photons A′µ. The modified Lagrangain is of the form:

LHP ⊃ −1

4
(Fµν Fµν + F ′

µν F ′µν)− JµA
µ +

1

2
m2

γ′ A
′
µA

′µ + ϵm2
γ′ AµA

′µ (2.7)

where mγ′ is the mass of hidden photon and ϵ represents the coupling scale between hidden

and ordinary photons. All the other relations follows similar to the axion where the current

density due to a background of hidden photons can be derived as

JHP = ϵm2
γ′ A

′ (2.8)
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and, the density of dark matter is related to the magnitude of hidden photon field as

ρDM =
1

2
m2

γ′ A
′2 (2.9)

The oscillating effect of the generated currenr density can be expressed as

JHP (t) = ϵm2
γ′ A

′ = ϵmγ′
√
2 ρDM e

ιmγ′t û (2.10)

where û represents the spatial dependence of the hidden photon polarization which is im-

printed onto the generated current density.

2.1.3 Direction detection of dark matter

In order to detect the low mass particles such as axions and hidden photons, scientists have

tried and developed various techniques/experiments such as astrophysical search for axions at

CERN Axion Search Telescope (CAST) at CERN, recoil measurements from detectors such

as CDMS and XENON10014,15 and light shining through wall experiment16 at DESY, Deutsches

Elektronen-Synchrotron.

We are mainly interested in studying the interaction of dark matter fields with the elec-

tromagnetic fields. The interaction of both, axion and hidden photon results in an effec-

tive current density JDM which sources an oscillating electro-magnetic field inside a re-

ceiver. Currently, there are three experiments around the globe exploiting this interaction

- ADMX (Axion Dark Matter eXperiment)17, HAYSTAC (Haloscope at Yale Sensitive

to Axion CDM)18, CAPP (Center for Axion and Precision Physics Research)19. A

hidden photon search with a superconducting cavity and photon counting technique20 was

demonstrated at SQuAD, a joint collaboration between the University of Chicago and Fermilab

(also a part of this thesis).

These experiments use a resonant microwave cavity to coherently accumulate a weak

signal arising from dark matter fields to photon conversion such that mDM c2 = h̄ω. In case
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of an axion search, the microwave cavity is submerged in a large superconducting magnet

(∼ 10T or higher) as shown in Fig. 2.1. The presence of a large magnetic field prohibits

the use of ultra low-loss superconducting cavities and are forced to use lossy copper cavities.

There are parallel efforts to develop novel cavity designs with thin layer deposition of high-Tc

material on the cavity walls21,22, photonic bandgap cavities made out of sapphire to achieve

higher quality factor. Hidden photons do not require a magnetic field and thus, we can

use the high quality factor superconducting cavities. Fabrication techniques developed at

Fermilab for the accelerator cavities have shown enormous Q-factor in excess of 1010 to speed

up the hidden photon search tremendously.

The main challenge of the dark matter searches is that the particle mass is an unknown

parameter and has to be experimentally determined by scanning a vastly wide mass range.

This demands different set of detectors to cover different mass ranges. In this work, we will

only focus on the search in microwave range, in particular, 3− 30GHz.

2.1.4 Expected signal due to dark matter

The interaction between the dark matter field and a microwave cavity can be modeled as a

pair of coupled harmonic oscillators. The power transfer between the two is optimal when the

dark matter mass is on resonance with the cavity and is enhanced by orders of magnitude

given by the cavity quality factor Qc. In a “haloscope” 1 type experiment, the expected

power deposited in the cavity is

Pax = (g2aγγ
ρa
m2

a
)(

β

1 + β
ωcB

2
0 V CmnlQL

1

1 + (2QL∆ωa/ωc)2
) (2.11)

where gaγγ is the coupling scale, β = 1− Qc
QL

is the impedance ratio, Cmnl is the form factor,

QL is the loaded quality factor and ∆ωa is the detuning between the axion and cavity

frequency. As search for the dark matter extends to higher frequency the volume of the

1. Haloscope because of the scope for axions in galactic halo
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detector must shrink to satisfy the resonance condition. Therefore, the signal power or the

expected number of photons scales unfavourably with the frequency, n̄DM ∝ V ∝ λ3 = ω−3.

A similar scaling applies to the hidden photon conversion as well.

For example, an axion search with the microwave cavity (5.965GHz) used in the present

work and given the experimental parameters in typical axion search experiments23,18,24,25,

QCD axion models26–29 predict a signal with mean photon number of n̄axion ∼ 10−8−10−5

per measurement. For hidden photons, the parameter space is less constrained,4,30,31 and

the mean photon number per measurement could be n̄HP ≤ 10−1 (n̄SQL
2 ≫ n̄axion, n̄HP).

2.1.5 Detection principle

In order to detect the feeble oscillating EM field generated by the DM, a quantum noise

limited amplifier is employed to readout the excess power in the microwave cavity. Recent

experiments use Josephson Parametric Amplifier (JPA)32–35, where the noise variance is

equivalent to fluctuations of an effective background of n̄SQL = 1 (see Chapter 3 for a de-

tailed discussion on JPA). It can be operated with a gain of > 20 dB with an instantaneous

bandwidth of order 10MHz. In a coherent detection, the JPA is operated in a phase pre-

serving mode, where both the quadrature of the field are amplified. The figure of merit for

a haloscope search experiment is the signal-to-noise ratio given by

R =
Psig
δPN

(2.12)

where δPN is the actual random fluctuations of the noise power within the detection band-

width. A coherent detection is associated with an intrinsic spectral resolution set by the

time over which a measurement is made. According to the Nyquist sampling theorem, a

noise limited to a bandwidth ∆ν and measured for a time τ is completely represented by

n = 2∆ν τ independent samples. For a Gaussian distribution of the noise voltage within a

2. n̄SQL = 1, due to 1/2 photon from the incoming signal mode and 1/2 photon scattered into the output
from the idler mode.
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bandwidth ∆ν, we can then write the standard error of the variance 3 of voltage distribution

as

δPN =

√
2

n− 1
kB Tsys∆ν

=
kB Tsys∆ν√

∆ν τ

(2.13)

where the total noise is modeled as Johnson noise at some effective temperature Tsys. Sub-

stituting Eq. 2.13 in Eq. 2.12, we obtain the Dicke radiometer equation

R =
Psig

kB Tsys

√
τ

∆ν
. (2.14)

Assuming the system noise temperature is known, Eq. 2.14determines the absolute energy

scale of the experiment and tells us the time τ required to detect or exclude the dark matter

conversion power Psig. Thus, it is very crucial to estimate the system noise temperature

with high precision, especially as we move towards using high quality factor cavities such

that ∆νc ≤ ∆νDM . See Chapter 4 for more careful discussion about various noise sources,

their limits and how to quantify them in a real experiment.

2.2 Current Challenges

In this section, I am going to discuss the current challenges faced by dark matter experiments

in the microwave frequency range and how we can tackle them.

Quantum limited amplification

Although JPA provides a big boost to the signal-to-noise ratio (SNR) in sub-GHz frequency

region but, the noise power proportional to h̄ω keeps on increasing at higher frequency

searches. Because of the non-commutativity of the two field operators, a simultaneous mea-

3. for large number of samples n− 1 ≈ n
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surement incurs a penalty from the quantum mechanics due to the Heisenberg uncertainty

principle. The real and imaginary quadrature of the cavity field can be written in terms of

the creation and annihilation operator as

Î =
â+ â†√

2

Q̂ =
â− â†√

2ι

(2.15)

Since the field operators contain number operators of a harmonic oscillator which obey

commutation relation [â, â†] = 1, they inherit the same non-commutativity where,

[Î, Q̂] =
1

2ι
[â+ â†, â− â†]

=
1

2ι
([â, â− â†] + [â†, â− â†])

=
1

2ι
(−[â, â†] + [â†, â])

=
1

2ι
(−1− 1)

=
1

ι

(2.16)

This non-zero commutation results in an uncertainty relation

∆Î∆Q̂ ≥ 1

2
(2.17)

which corresponds to a minimum uncertainty of half a photon worth noise added to each

measured quadrature. A coherent receiver as mentioned above measures both the quadrature

Î and Q̂ whereas, a bolometric receiver measures the number operator N̂ = â†â. Quantum

noise arises because the quadrature operators do not commute with each other. This added

noise overwhelms the signal by multiple orders of magnitude making the dark matter search

impossible in a reasonable amount of commissioned time.

Therefore, we developed a novel measurement technique which evades the quantum limit
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by avoiding the simultaneous measurement of non-commuting observables of the cavity field

(see Chapter 5). The field can equivalently be represented with conjugate variables which

follows the same commutation relation, number operator N̂ and the phase θ̂. For a dark

matter search, information about both the quadrature is not necessary and just counting

the number of photons deposited in the cavity is sufficient to classify it a detection event.

This results in a distortion of the phase space density where the uncertainty in the amplitude

is arbitrarily low at the expense of complete randomization of the phase information.

Plummeting signal power

As mentioned earlier, the signal power which is proportional to the volume of the detector

shrinks at higher frequencies to maintain the resonance condition. To overcome this, I

developed a stimulated emission technique (see Chapter 6) to enhance the conversion of DM

into photons by preparing the cavity in a Fock state.

Anomalous skin depth effect (ASE)

Due to the presence of a large magnetic field required for axion conversion, the current exper-

iments are limited by the quality factor achieved with copper cavities. The dissipation losses

in the cavity walls increase at cryogenic temperature and high frequencies due to the ASE.

It was first fully described phenomenologically in36 and theoretically in37. Experimentally,

it was observed that the mean free path of the conduction electrons becomes larger than the

penetration depth of the fields. As a result, only a small fraction of electrons can contribute

to conduction, suppressing the effective conductivity at microwave frequencies.

From the classical theory of the skin depth, which tells us that any finite frequency ν,

EM fields only penetrate a distance

δ = (π ν µ σ)−1/2 (2.18)
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into a metal with permeability µ ≈ µ0 and DC conductivity σ. This expression becomes

invalid at low temperatures when δ drops below the mean free path of the electrons, l =

(σme vF /ne e
2), where vF is the metal’s Fermi velocity and ne is its conduction electron

density. The suppression in the effective conductivity is of the orderO(δ/l) thus, σ −→ γ(δ/l)σ

where γ is a numerical factor. Substituting it in Eq. 2.18 we obtain

δa =

(
me vF

γ π ν µne e2

)1/3

(2.19)

The quality factor of the cavity is inversely dependent on δ and thus, plugging all the

frequency dependencies in Eq. 2.11, we see the rather unfavorable scaling of the axion power

conversion with frequency Pax ∝ ν−14/3.

Hence, it is an important to innovate and develop new fabrication methods to achieve

high-Q even in the presence of high magnetic field. One approach that I have embarked upon

during this thesis work is to make high-Q cavities using photonic crystals (see Chapter 7).

The bandgap protects the fields from reaching the metallic walls, lowering the dissipation

losses by orders of magnitude.

2.3 Our Approach

At SQuAD, we have followed the “divide and rule” strategy to develop and demonstrate

a solution to each challenge I mentioned above. Our goal is to cohesively integrate all the

technologies mentioned in this work as well as others to conduct an axion search with a

tuning range of 10% around 12 GHz. In my thesis work, we were immensely benefited by

the advancement in superconducting qubit technology geared towards quantum computing

applications. We built upon the current research to develop a single photon counter with

background counts 1300× lower than the SQL. Using a qubit to prepare quantum state of

light in the cavity such as a Fock state, we demonstrate a signal enhancement technique

with stimulated emission to speed up the dark matter search. Moreover, inspired by the
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nano-photonic cavities, we developed photonic bandgap cavity at microwave frequency to

achieve very high quality factor which are compatible with large magnetic field.
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Chapter 3

Superconducting devices

Superconductivity was first discovered in 1911 by a graduate student working with Dutch

physicist H Kamerlingh-Onnes. While studying the material properties at different tempera-

tures, he observed that the electrical resistance of a mercury wire suddenly dropped by a fac-

tor of 20, 000 when the wire cooled below a certain temperature. This seemingly-frictionless

motion of electrons in a material led to the discovery of a remarkable phenomenon and we

named such materials as superconductors. But it was not until 1960s that the scientists

were able to mathematically formulate a theory which would explain all the experimental

evidences such as field expulsion (Meissner effect), energy gap and interactions of conduction

electrons in a cohesive manner. This theory is knows as the “BCS theory” named after the

trio John Bardeen, Leon Cooper and Bob Schrieffer for which they shared the 1972 Nobel

Prize in Physics.

So, how do we use superconductors for quantum bits? Yet, another remarkable phe-

nomenon we haven’t discussed so far is the “quantum tunneling” of electron pairs between

two superconducting layers separated by an insulating barrier. This phenomenon known as

the “Josephson effect” named after Brian Josephson tells us that a current flows through the

“Josephson Junctions” without any loss until a critical current is reached. He also predicted

the exact relation between the current and voltage across a junction.

In this chapter, I will describe the practical implementation of “Josephson junctions”

and how they have been developed over the past few decades to realize a quantum bit. I will

primarily focus on “transmon” qubit and how we can couple it to the field of a microwave

cavity to build a photon counting device. Although, I do not explicitly talk about 3D

superconducting cavity, it is an integral component to the experiments in this thesis but

I will discuss all the characterization methods in this chapter. I refer readers to these

references38,39 for detailed discussions on the 3D cavity design and fabrication methods.
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In the end, I will discuss the principle of operation and design of quantum noise limited

amplifiers which use the non-linearity provided by the Josephson junctions.

3.1 Introduction

Josephson junction is a good candidate to make quantum bits because (1) of the low dis-

sipation inherent to superconductors allowing long coherence times (2) complex microwave

circuits can be nano-fabricated using integrated-circuit processing techniques thus scaling

to a large number of qubits is possible. In order to make a “quantum bit”, we use the

non-linearity provided by Josephson junction to lift the degeneracy in a linear oscillator such

that the energy levels are no longer equally spaced. We can isolate the first two-levels which

constitutes our “Two-level System (TLS)” or an artificial atom as depicted in Fig. 3.1.

Josephson junction consists of two superconducting layers separated by a thin insulating

barrier. As described in Landau-Ginzburg theory, the superconducting state on either side

of the junction can be expresses by a complex order parameter ψ = |ψ|eiδ. The tunneling of

Cooper pairs from superconductor A to superconductor B in response to the phase difference

δ = δA − δB is known as the Josephson effect. The tunneling of charge carrying Cooper

pairs manifests at DC as a dissipation-less super current even in the absence of any applied

voltage.

For a time dependent δ, the Josephson effect is described by the equations

V (t) =
Φ0

2π

∂δ

∂t
, (3.1)

I(t) = I0 sin(δ(t)), (3.2)

where Φ0 = h
2e = 2× 10−15Tm2 is the flux quantum, and I0 is the critical current of the

Josephson junction, which depends on the material properties, geometry and temperature.

Comparing Eq. (3.1) to the integral form of Faraday’s law shows that the Josephson phase

(Φ0/2π) δ(t) behaves formally like a magnetic flux. Using this correspondence and Eq. (3.2),
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we can define the Josephson inductance as

LJ =
Φ0

2π

δ(t)

I(t)

=
Φ0

2πI0

arcsin(I/I0)

(I/I0)

(3.3)

By expanding Eq. (3.3) to second order in (I/I0), we obtain

LJ = L0 +∆L(I/I0)
2 (3.4)

with L0 = Φ0/(2πI0) and ∆L = L0/6. The energy stored in the JJ can be computed using

Eq. 3.1 and 3.2

U =

∫
IV = EJ (1− cos(δ)) (3.5)

where, EJ = Φ0I0
2π is the Josephson energy.
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Figure 3.1: Anharmonic quantum oscillator. (a) An usual harmonic oscillator consists of
a capacitor C and a linear inductor L. A Josephson junction can be modeled as a non-linear
inductance represented by the orange cross. It is composed of two superconducting layers
separated by a thin insulating layer that allows tunneling of Cooper pairs. This junction is
dissipation less at temperatures below the critical temperature of the superconductor. (b)
The potential of this circuit is no longer quadratic (dashed line) due to the presence of a
non-linear element and is, instead a cosine function (orange). As a result, the energy levels
are no longer equally spaced and the energy eigenstates can be addressed individually.

23



3.2 Non-linear oscillator

There are many types of superconducting circuits which exploit the non-linearity offered

by Josephson junction such as flux, phase or charge as the quantum degree of freedom.

In the scope of this work, we will focus on a particular type of Josephson junction based

device called the transmon40. The design of transmon is simple: it is composed of a single

junction shunted by a large capacitance. The resultant Hamiltonian resembles like a quantum

harmonic oscillator where the conjugate variables follow the usual commutation relation. We

can describe the transmon circuit by the simple Hamiltonian40

Ĥ = 4EC(n̂− n0)
2 + EJ cos δ̂ (3.6)

where n̂ and δ̂ are the normalized operators for charge and phase difference across the

junction and n0 is the offset charge. EC is the charging energy of the capacitor and together

with EJ determine all the key features of a transmon. In particular, the transition frequency

between the ground, |g⟩ and excited state, |e⟩ scales as ωge ∼
√
8EJEC . The best selling

point of transmon is its protection against charge noise, fluctuation in n0 which is achieved

by choosing the parameters of transmon such that 1 ≪ EJ/EC < 104. The anharmonicity

of the transmon α, difference in transition energies between the two excited states scales

with EC :

α = En+1,n − En,n−1 ≃ −EC (3.7)

This implies that as we increase EJ/EC to suppress charge noise, we are also inadvertently

lowering the anharmonicity of the transmon. A small anharmonicity constrains how fast we

can selectively address the individual transition using microwave control drives. Fortunately,

while the charge dispersion scales exponentially with EJ/EC , the α only scales polynomially.

This allows us to design devices with good coherence times (∼ 50 − 200 µs) and large α ∼

150MHz by appropriately choosing EJ and EC .

A transmon circuit can be simulated using commercial tools such as Ansys HFSS or in
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conjunction with open-source community tool such as pyEPR41 to extract the relevant design

parameters. The simple design of a transmon qubit makes it easier to fabricate the device

using well-established electron-beam and photon lithographic procedures. These traits make

the transmon a favorable choice for many circuit-QED (cQED) experiments as well as the

industry efforts to realize a quantum processor which can outperform classical computers.

3.3 Design and Fabrication

Fig. 3.22 shows an optical image of the transmon qubit fabricated in the nano-fabrication

facility at PNF, UChicago. Please refer to Akash Dixit’s thesis42 to read more about the

design and fabrication steps involved in achieving the desired device parameters. The devices

used in both, the photon counting and stimulated emission experiments were shared with

the other quantum computing experiments in the lab.

3.4 Coupling transmon with a microwave cavity

A microwave cavity described by a simple harmonic oscillator Hamiltonian and a transmon

qubit are two of the simplest ingredients in cQED toolbox but offer immense possibilities to

create and study complex physical systems which are otherwise difficult to find in nature. We

are going to study the simplest configuration of a transmon capacitively coupled to a simple

resonator. The Jaynes-Cummings Hamiltonian describes the interaction of such a system

consisting of the transmon Hamiltonian, that of the resonator and a dipole coupling term

that relates the current induced by the oscillating electro-magnetic field in the resonator.

The Hamiltonian can be expressed in terms of the number operators of the cavity (â) and

qubit (σ) as

Ĥ/h̄ = ωc â† â+ ωq
σz
2

+ g (â+ â†)(σ+ + σ−) (3.8)

where ωc and ωq are the transition frequencies of the cavity and qubit respectively and g is

the dipole coupling between the electric field of the cavity mode and the qubit antenna. It
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can be approximated as g ∼ d⃗ · E⃗ where d⃗ is the dipole moment of the qubit and E⃗ is the

zero point field of the cavity mode.

In the dispersive limit, meaning the qubit and cavity are far detuned (∆ = ωc − ωq) and

the coupling g
∆ ≪ 1, the Jaynes-Cummings Hamiltonian can be investigated using second

order perturbation theory to obtain an approximate expression

Ĥ/h̄ ≈ ωc â† â+ ωq
σz
2

− χâ†â
σz
2

− K

2
â†â(â†â− 1) (3.9)

where K is the non-linearity of the resonator inherited due to its interaction with the trans-

mon. We can infer that the interaction term is dependent only on the number operators

â† â and σz and χ = g2

∆
α

∆+α . I would like to bring your attention to the key feature of

this Hamiltonian, a photon number dependent frequency shift (χ) of the qubit transition as

shown in Fig. 3.2. The qubit frequency shifts by an integer multiple of n · χ dependent on

the cavity occupation number.

Ĥ/h̄ ≈ ωc â† â+ (ωq − χâ†â)
σz
2

(3.10)

Similarly, we can rewrite this Hamiltonian in the following manner where the cavity

frequency shifts depending on the state of the qubit as shown in Fig. 3.3

Ĥ/h̄ ≈ (ωc − χ
σz
2
) â† â+ ωq

σz
2

(3.11)

We will take advantage of Eq. 3.10 and Eq.3.11 to simultaneously couple a transmon qubit

to a low-Q (Q ∼ 104) readout cavity for a fast dispersive readout and a high-Q (Q ≥ 107)

storage cavity for storing and retrieving the quantum information.
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Figure 3.2: Photon number dependent frequency shift. (a) Experimental sequence
describing the spectroscopy measurement of the transmon after displacing the cavity with
a mean photon number of zero and one. (b) In the presence of cavity photons, dispersive
coupling shifts the |g⟩ −→ |e⟩ transition frequency down by integer multiples of χ, as shown
by the grey arrows. By fitting a Poisson distribution, we can estimate the mean photon
number of a coherent state in the cavity.

3.5 Coupling to the outside world

In order to perform operations on these sample, we couple them to the outside world via

input and output signal lines. In case of 3D qubit-cavity modules, we have been using SMA

flange mounts as a dipole antennae shown in Fig. 3.4, whose coupling can be conveniently

set by the pin location and the length. There can be more than one coupling pins to control

each component individually. The coupling quality factor Qc is measured and set at the

room temperature as per the desired rate of operation. For example, in order to quickly

readout the transmon state, we set the coupling port on the readout cavity such that the
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Figure 3.3: State dependent frequency shift. Spectroscopy measurement of the res-
onator cavity when the qubit is prepared in |g⟩ and |e⟩ state before probing the resonator.
The χ shift is greater than the κ of the resonator which allows fast and efficient readout. The
demodulated signal is very well approximated with a Lorentzian function (red) to obtain an
estimate of the frequency and the linewidth κ.

Qc ≪ Qi
1. On the other hand, for a storage cavity we set Qc > Qi to prevent the thermal

photons from leaking in and corrupting the quantum state but at the same time allowing

sufficient delivery of power to manipulate the qubit and cavity states at a reasonable rate.

The Hamiltonian of a drive on a mode a can be described as:

Hdrive = ωaâ†â+ iϵ(t)âe−iωt − iϵ∗(t)â†eiωt (3.12)

where ϵ(t) is the time dependent drive amplitude.

3.5.1 Microwave control electronics

The microwave signals required to control the sample with arbitrary phase and ampli-

tude control are sourced from a heterodyne setup, consisting of digital-to-analog converters

1. We need to ensure that the qubit or storage cavity lifetime is not Purcell limited by the readout decay
rate.
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Figure 3.4: SMA dipole antenna for input-output control. A 3D copper cavity coupled
to a transmon qubit fabricated on a sapphire chip in the middle. The SMA dipole antenna
mounted on the top couples the system to the outside world. Courtesy: Reidar Hahn

(DACs), local oscillators (LOs) and IQ mixers. DACs provide the capability to generate

an arbitrary waveform centered around an intermediate frequency (IF) ωIF = −250MHz to

250MHz, with up to 500MHz bandwidth. The IF tone is then up-converted with an IQ

mixer (Marki MMIQ-0218LXPC or MMIQ-0416L) using a continuous wave (CW) microwave

LO (Keysight MXG or SignalCore SC5511A). We suppress the LO leakage and unwanted

side-bands as a by-product of the mixing process by calibrating the gain and phase offset

values of the DAC channels such that their relative power is at least 40 dB below the main

peak. The signals are further filtered with either a band-pass or a low-pass filter at room

temperature and further attenuated in the dilution refrigerator as shown in Fig. 3.5. The

attenuators are staggered at different temperature stages to minimize the thermal radiation

from higher stages to reach the subsequent stages. If required, additional low-noise amplifiers

29



are added to the control drives to increase the rate of operations.

QICK

In addition to the commercially available RF electronics solutions, I did get a chance to get

involved in the development and testing of custom RF electronics board based on RFSoC

technology called QICK (Quantum Instrumentation Control Kit)43. It consists of high

frequency DAC channels to directly generate tones up to 6GHz and ADCs to digitize the

readout signal. We tested the new hardware on a transmon qubit and demonstrated that the

RF performance of this new hardware is on par with the commercially available expensive

equipment. The firmware for this hardware was developed at Fermilab and is freely available

on GitHub44 for the community to jump-start and develop further as per their requirements.

We also added example Jupyter notebooks to guide the users with basic qubit experiments.

3.5.2 Amplification chain

The transmitted signal from readout cavity is amplified by a Josephson Parametric Amplifier

operating close to the quantum limit. The amplified signal then goes the High-electron-

mobility transistor (HEMT) amplifier at 4K before reaching the room temperature where

a couple of Miteq amplifiers further increase the SNR. We use the same LO and split it

twice to use it as a JPA pump to keep the phase delay between the readout and pump

tone constant. The RF signal is down-converted using an IQ mixer and the resultant I and

Q signals are digitized using a pair of Analog-to-digital converters (ADCs). We do add a

pre-amplifier ( Mini-Circuit ZX60-P103LN+) in front of the ADC to avoid running into

shot-noise/bit-noise issue.
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Figure 3.5: Wiring diagram inside the dilution refrigerator and the room tem-
perature measurement setup. Quantum Machines (QM) OPX controller was used to
generate the arbitrary wave forms (DACs) and digitize the incoming readout signal (ADCs).
All the tones are up-converted using IQ modulation. Storage cavity is controlled via a direct
port and qubit is controlled by injecting a drive into the strongly coupled port of the readout.
Readout signal is injected into the weakly coupled port and, the signal is routed to the JPA
using non reciprocal circulator elements. The amplified signal is routed to the HEMT for
further amplification and the signal is then mixed down to 100MHz IF, further amplified,
and finally digitized. All the RF lines are heavily filtered with homemade eccosorb filters
and attenuated to minimize stray radiation from entering the device.

31



3.6 Qubit readout and characterization

In the previous section, we discussed how the qubit imparts a state dependent shift on the

resonator transition frequency. When this shift χ is much larger than the linewidth of the

cavity modes, the dispersive shift offers a convenient tool to implement conditional operations

between a transmon and a cavity mode45. In particular, we could use this frequency shift

of low-Q resonator to detect the state of the transmon46,47. Fortunately, this measurement

is Quantum Non-demolition (QND)48 in nature, meaning the qubit state is not perturbed

significantly while probing the transition frequency of resonator with a weak microwave drive.

In a later section, I will show the experimental result of the QND-ness of this readout scheme

as shown in Fig. 3.10.
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Figure 3.6: QND readout of the transmon state. (Top) shows the two quadrature values
of the down-converted readout signal for qubit prepared in |g⟩ and |e⟩ state. (Bottom) By
fitting a sum of two Gaussian we can estimate the overlap region and assign a fidelity as
F = 97%. The red dashed line shows an optimal value of the threshold for tagging a qubit
state based on a single shot readout.

Eq. 3.11 tells us that the resonator roughly takes 1
χ time to maximally resolve the

two qubit states. However, the information is leaking out of the resonator at the rate κ

thus, we can achieve a high-fidelity readout by optimising the design parameter such that
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χ/κ ∼ 1. The decay rate of the readout can be easily controlled by adjusting the coupling to a

transmission line. We can improve the SNR of readout chain by amplifying the readout signal

at the quantum limit using a Josephson Parametric Amplifier 2. Fig. 3.6 shows a typical

readout histogram with the qubit initialised in |g⟩ and |e⟩. Clearly, single-shot Gaussian blobs

are very well separated and we can achieve a readout fidelity of F = 1− 1
2(P (g|e) + P (e|g))

= 97% with our current device which is likely limited by the thermal excitation of the qubit

and the decay of qubit during the readout process. This is a remarkable result feat to achieve

with only a mean number of 2 photons in the readout resonator (see Sec. 4.2.3), which would

otherwise take 10− 100 photons.
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Figure 3.7: Rabi-flopping experiment of a transmon. (a) Power/Amplitude Rabi: A
Gaussian pulse of fixed length 80 ns (σ0 = 20 ns) and variable amplitude (A) is applied to
flip the transmon from |g⟩ and |e⟩ state. (b) Time Rabi: Similarly, a constant amplitude
pulse (A0) but varying pulse length (σ) is applied to Rabi-flop the transmon.

With an optimal readout scheme in place, we can now perform a series of basic mea-

surements to determine the key parameters related to transmon. For example, a Rabi-flop

2. I will discuss JPA in detail in a later section.
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experiment to estimate the power required to flip the transmon from |g⟩ to |e⟩ state and vice

versa (known as π-pulse). There are two ways to calibrate the power and duration of the

π-pulse, either fix the duration and vary the power or fix the power and vary the duration

as shown in Fig. 3.7. Microwave electronics is very well equipped to handle precise-timing

control but suffers from variation in output power due to thermal fluctuations as well as

bit-resolution on the DACs. I personally prefer the power-Rabi for π-pulse calibration to

regularly fine-tune the π-pulse. However, I would like to point out that care must be taken

while choosing the pulse length such that the bandwidth (frequency content) of the pulse

is ≪ α to avoid populating the higher transition levels of the transmon. We typically use

Gaussian shaped pulse to keep the bandwidth 3 small.

After π-pulse calibration, we can perform a transmon lifetime (T1) experiment, where

we first excite the qubit from |g⟩ to |e⟩ and monitor its decay back to ground state after a

variable wait time as shown in Fig. 3.8 (a). The coherence of a transmon (T2) is measured

using a Ramsey sequence which consists of two π/2-pulses separated by a variable delay

time. In practice, the phase of the second π/2-pulse is advanced to intentionally induce

oscillations such that the resultant oscillations can be fit to estimate the detuning between

the drive tone and the transmon resonance frequency as shown in Fig. 3.8 (b).

After characterizing the first two levels of a transmon, we could potentially use the third

energy level to perform certain useful manipulations such as qubit temperature measurement,

quickly reset the transmon using f 0− g 1 side-bands etc. Since we know that the |e⟩ −→ |f⟩

transition occurs at a different frequency from that of |g⟩ −→ |e⟩, we can simply apply the

same techniques discussed above but with the drive frequency centered around ωef instead.

For example, we can perform a Rabi-flop experiment between |e⟩and |f⟩ state using the

protocol described in Fig. 3.9 where we first excite the transmon from |g⟩ −→ |e⟩ and then

send a drive tone with variable amplitude to excite the transmon from |e⟩ to |f⟩. Similarly,

we can perform a Ramsey measurement between |e⟩ and |f⟩ state and determine its coherence

3. Bandwidth of a Gaussian pulse with standard deviation σ is given by, ∆ν ≈ 0.44
σ
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Figure 3.8: Qubit lifetime and dephasing time measurement. (a) T1 measurement
by sending a π-pulse to excite the transmon to |e⟩ state and monitor its decay as a function
of variable wait time. By fitting an exponential function, we extract the T1 = 120 µs.
(b) T2 measurement with a Ramsey experiment. The sequence consists of two π/2-pulse
separated by a variable delay time. The envelope of the measured oscillations informs the
T2 ∼ 200 − 230 µs and its frequency provides us the detuning between the drive and the
transmon resonance frequency. In this case, we intentionally introduced a 60 kHz synthetic
detuning.

properties.

We use this Rabi protocol to measure the ambient excited state population of the trans-

mon in its steady state49. The measurement consists of two power-Rabi experiments de-

scribed as follows: (1) we flip the qubit from |g⟩ state to |f⟩ level by sending πge followed by

a πef to obtain blue curve in Fig. 3.9 (2) we directly send a πef pulse and expect the trans-

mon to excite to |f⟩ state iff the qubit started in the |e⟩ state. We fit the two data curves

with a decaying sinusoidal function to extract the relative amplitudes such that r =
P (|e⟩)
P (|g⟩) .

Note that we apply a calibrated πge pulse at the end so we can use the state discriminator

described earlier. Assuming the qubit temperature is low enough that only the first two

levels are occupied gives P (|g⟩) + P (|e⟩) = 1 . Combining these two yields the excited state
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Figure 3.9: Qubit temperature measurement Blue: ef Rabi-flopping experiment of a
transmon. The transmon is first excited from |g⟩ to |e⟩ state followed by another Gaussian
pulse centered around ωef with varied amplitude (orange pulse) plotted on the x-axis and
y-axis corresponds to the measured probability of the qubit in the |g⟩ state; a second πge
pulse is applied to measure the qubit in either |g⟩ or |e⟩ state. Green: |e⟩ to |f⟩ Rabi-flop
experiment without initializing the transmon in |e⟩ state.

population n̄q = P (|e⟩) = r
r+1 . Using Fermi-Dirac distribution, we can relate the effective

temperature of the transmon to the ratio of ground and excited population

r =
P (|e⟩)
P (|g⟩)

= e
−h̄ ωge
kBT

(3.13)

⇒ Tq =
h̄ ωge
kB ln r

(3.14)
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where ωge is the transmon transition frequency. However, this method is reliable only if the

excited population is of the order of a few 1− 5% such that the oscillations are large enough

to fit. In the current device, the oscillations are negligible and we couldn’t find a reliable fit

to extract the excited population. Based on the statistical fluctuations in the amplitude, we

set an upper bound on the excited population to be < 1% or equivalently Tq < 50mK.

QNDness of qubit-readout

In a dispersive interaction, we assume that the measurement of qubit does not perturbed

the state i.e. it is a quantum non-demolition (QND) measurement or in other words, does

not induce additional relaxation in the qubit state. However, a recent study has shown

that parity measurements, while highly QND, can induce a small amount of additional

relaxation50. Hence, in order to estimate the same, but, in the context of repeated qubit

measurements, we follow the method described in50, where we perform a qubit T1 experiment

interleaved with varying number of readout pulse during the delay time. In that experiment,

the total relaxation rate was modeled as a combination of the bare qubit lifetime τq and a

demolition probability pd associated with each dispersive readout. In Fig. 3.10, we show the

extracted total decay time (τtot) and demolition probability pd = 0.6% as shown by the fit.

In other words, a single number resolved qubit measurement is 99.4% QND.

3.7 Cavity state control and measurement

The very first measurement includes probing the cavity with a continuous-wave (CW) source

such as a Network Analyzer (NA) to determine the resonance frequency of the cavity. How-

ever, in some cases, there may not be a direct port connected to the storage cavity. In those

cases, we immediately move to pulsed measurements to characterize the cavity parameters

accurately by probing the transmon and the readout.

In section 3.4, we discussed the transmon-cavity Hamiltonian and the effect of coupling on
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Figure 3.10: QNDness of qubit measurement. Qubit cavity T1 measurements were
performed with repeated readout pulses interleaved during the delay time with a variable
repetition interval time τrep. The extracted total decay time was fit to a model 1/τtot =
1/τq + pd/τrep. From the fit (red line), we infer a demolition probability per readout of
pd = 0.6% corresponding to a QNDness of 99.4%, which is a bit lower than reported for a
parity protocol50. The natural decay time of the qubit τs = 120 µs is indicated by a dashed
grey line.

the transmon frequency shift as a function of the number of photons in the cavity. In Fig. 3.2,

we performed a simple number-splitting experiment where we probe the population in each

Fock state using a number-selective π-pulse on the transmon, using it as a counter. I must

point out that this type of spectroscopy measurement does not reveal any phase information

of the quantum state stored in the cavity. In order to obtain complete information (both

the quadrature), it is useful to measure the Wigner function of the cavity state. It relates

the expectation values of the photon number parity operator P̂ = eiπâ
†â of a cavity state

after it is coherently displaced with amplitude β. The Wigner function for a state given by

density matrix ρ is

W (β) =
2

π
Tr(D̂†(β) ρD̂(β) P̂ ) (3.15)

where P̂ = eiπâ
†â is the photon number parity operator. By measuring the Wigner function
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or the parity at various points, we can reconstruct the density matrix within a truncated

Hilbert space. It contains complete information of the quantum state51 and non-classical

correlations present in the cavity state. However, we will learn that we do not really need this

phase information for any of the experiments discussed in this thesis, nonetheless, remains

a powerful tool to confirm the quantum nature of the prepared states.

A classical electromagnetic drive acting on a linear resonator populates it with a coherent

state and we can describe this action by a displacement operator D̂(α)

D̂(α) = e α
∗â−α â† . (3.16)

The evolution of such states can be visualized by the periodic oscillation of a simple pendulum

in the phase space with radius given by |α|. Mathematically, we can describe a coherent state

α as an infinite superposition of Fock states weighted by a Poisson distribution

|α⟩ = e−|α|2/2
∞∑
n=0

αn√
n!

|n⟩ . (3.17)

Mapping photon number to parity measurement

In order to determine the number of photons in the cavity, we could either use a number

resolved-π pulse (as shown in Fig. 3.2) or perform a parity measurement as depicted in

Fig. 3.11. Experimentally, it is implemented by a simple Ramsey pulse sequence on the

transmon. It starts with a π/2 pulse to bring the transmon in a superposition of |g⟩ and |e⟩.

During the evolution, the cavity and transmon becomes entangled at a rate χ, resulting in

a precession of superposition state around the Bloch sphere at a rate n · χ, where n is the

number of photons in the cavity 4. By waiting for a time π/χ, the transmon would acquire

a phase 2nπ for even number of photons and (2n+1)π for odd number of photons, pointing

4. The same can be said about the precession of each Fock state |n⟩ around the Bloch sphere with a rate
nχ. This is essentially a controlled-phase gate on each cavity photon conditioned on the transmon state,
described by Cπ = Î ⊗ |g⟩ ⟨g|+ e−iπn̂ ⊗ |e⟩ ⟨e|.
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them along opposite directions on the equator of the Block sphere. A −π/2 pulse on the

qubit maps the parity information to either |g⟩ and |e⟩ state of the transmon respectively.

For a dark matter search, the expected mean photon number n̄ ≪ 1 thus, it is sufficient to

perform a single measurement (1 bit of information) to find out if there is a photon in the

cavity or not 5.
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Figure 3.11: Photon number parity measurement. The experimental protocol to mea-
sure the Wigner function of a cavity state. The sequence consists of two π/2 pulses separated
by a delay time π/χ which maps the number of photons on the qubit state.

Coherence measurements

In order to demonstrate the exceptional coherence properties of 3D superconducting cavities,

let’s measure the energy relaxation time T1, of the cavity by observing the decay of a coherent

state in the cavity. We first displace the cavity state by a coherent state n̄0 = |α0|2 ≫ 1 and

probe the probability of it being in the ground state after a variable delay time. A resolved

qubit π-pulse centered at the ground state peak is used to infer the cavity state if it has

relaxed back to vacuum. The pulse sequence and phase space representation of the cavity

5. Of course, one would need to perform a binary search to distinguish photon states upto |n⟩, which
takes log2n steps.
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state is depicted in Fig. 3.12 and has the following functional form51,38:

Pe(t) ∝ e−|α|2exp(−κt) (3.18)

where κ is the characteristic decay constant associated with the energy relaxation of the

cavity state. The double exponential form requires some care choosing α0 ≥ 3 to displace

the cavity sufficiently high that the P (t = 0) ∼ 0 for some time. This helps to easily separate

the two distinct curvatures. By fitting the data, we extract the decay constant κ = 757± 7

Hz which corresponds to a cavity lifetime T1 = 1
κ = 1.33± 0.01 ms.
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Figure 3.12: Storage lifetime T1 measurement with a coherent state. (a) The ex-
perimental sequence to measure the storage cavity lifetime. It consists of a large cavity
displacement followed by a variable delay. The cavity state is measured using a number
selective π-pulse which excites the qubit only if the cavity has relaxed back to its ground
state. (b) Representation of the cavity state evolution in phase-space after a delay time
relaxing back to the ground state. (c) Measured qubit excitation probability as a function of
the delay time. At first, the signal is flat because the cavity is still far from the origin since
α0 ≫ 1. For longer delay time, the curve is again flat since the vacuum state is equilibrium.
The time duration that separated these two flat regions gives κ for sufficiently large displaced
state. The data is fit to Eq. 3.18 to extract χ which results in a lifetime of 1.33± 0.01 ms.
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Figure 3.13: Storage lifetime T1 measurement with a Fock state. (a) The experimental
sequence to measure the storage cavity lifetime after preparing the cavity in a |1⟩ Fock state
using optimal control pulses. It is measured using a number selective π-pulse centered at the
|n⟩ = 1 peak which excites the qubit only if the cavity has not relaxed back to its ground
state (b) Qubit spectroscopy with a resolved π-pulse reveals a single peak corresponding
to |n⟩ = 1 Fock state validating the cavity state prepared by OCT pulses. The x-axis is
normalized with the χ shift to display the basis Fock states. (c) Measured qubit excitation
probability as a function of the delay time. The data is fit to an exponential decay which
gives a lifetime of 1.36± 0.02ms.

Additionally, we could verify that the T1 decay follows a simple exponential by preparing

the cavity in |1⟩ Fock state as shown in Fig. 3.13 (b). We could either use Selective-

on Number Arbitrary Phase (SNAP) gates52–54 or Optimal Control pulses (OCT)55,56 to

create non-classical states in the cavity. As shown in Fig. 3.13, the cavity is prepared in

|n⟩ = 1 Fock state using the OCT pulses. A qubit spectroscopy performed with a resolved

π-pulse 6 reveals a single peak which is centered at the frequency shift equal to χ confirming

the successful preparation. The protocol for conducting a T1 experiment remains similar

afterwards where a variable delay is introduced before measuring the cavity state by exciting

the qubit with a resolved π-pulse centered at the |n⟩ = 1 peak. As expected, a single

6. For a resolved π-pulse, I use a 3000 ns (σ = 750 ns) long Gaussian pulse such that the bandwidth is
much smaller than the χ shift.
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exponential is observed in the qubit excitation probability Pe with a time constant within

the uncertainty of measurements of coherent states. There is a trade-off between the two

measurement techniques - coherent states are easier (Fock state are harder) to prepare where

as the decay signal from Fock state is easier (coherent decays with double exponential) to

interpret. However, it is reassuring to obtain the two types of measurements and check

that the T1 = 1.36± 0.02ms is in good agreement with the classical energy decay rate of a

coherent state.

Compared to their 2D counterpart, 3D cavities are also far superior to preserve the phase

coherence of quantum states. Similar to the transmon coherence measurement, we can per-

form a Ramsey type experiment to determine the phase coherence of the quantum memories.

The experiment starts with the cavity prepared in a superposition of |0⟩ and |1⟩ Fock states

followed by a variable time delay before probing the cavity state. The cavity is then displaced

back towards the origin with a displacement α1 = α0e
jωt such that the phase coherence is

revealed in the sinusoidal oscillations of the subsequent T2 experiment. There are multiple

ways to prepare the cavity in a superposition state: SNAP (Fig. 3.14 (a)), OCT pulses

or a careful preparation of a coherent state such that only |0⟩ and |1⟩ (Fig. 3.14 (b)) are

populated. This measurement also helps in accurately determining the resonance frequency

of the cavity at sub kHz range.

Correction to the χ shift

In Eq. 3.9, we neglected the higher order terms in the dispersive interaction which are only

relevant at higher occupation number in the resonator. However, as we will learn later their

contributions start to matter and cannot be neglected any further. One of the dominant

terms which we should measure and correct for is second order correction to the dispersive

shift, χ′, which relates the photon number (n) dependent shift as

χ(n) = nχ+
1

2
(n ∗ (n− 1))χ′. (3.19)
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Figure 3.14: Storage coherence T2 measurement. The experimental sequence to mea-
sure the storage cavity coherence. (a) Qubit spectroscopy revealing cavity prepared in an
equal superposition of |0⟩ and |1⟩ using SNAP sequence. It is composed of a combination
of displacement drives α = {0.56,−0.24} interleaved with a selective 2π rotation on the
transmon. The cavity is then left to evolve for a variable time delay before giving a final
displacement of α1 = α0e

jωt, where ω is the intentional detuning (1 kHz) introduced in the
software. (b) Qubit spectroscopy of the cavity prepared in a superposition of |0⟩ and |1⟩
using a displacement drive, but with unequal occupation probabilities. (c) Measured qubit
excitation probability as a function of the delay time. The data is fit to extract a coherence
time T2 of 2.39ms.

To measure the correction term, we displace the cavity with a large displacement |α| ∼ 3 such

that the effect is pronounced at higher photon numbers. Soon after that, a qubit spectroscopy

is performed with a resolved π-pulse. The resultant cavity probability distribution is fitted

to a sum of Gaussian functions to extract the transition frequency corresponding to each

Fock state νq,n as shown in Fig. 3.15. The measured frequencies are then fitted to Eq. 3.19

to extract χ = 1267± 8 kHz and χ′ = 7.3± 5.9 kHz.

Cavity Kerr non-linearity

The anharmonicities of the cavity (k) and transmon (α) differ by orders of magnitude and

therefore, require very different characterization methods. To measure this, we perform an
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Figure 3.15: Qubit-cavity dispersive shift measurement. The dispersive shift χ and its
second order correction χ′ are determined from qubit spectroscopy experiments with several
different displacements (top).The probability distribution is fit to a sum of Gaussian and the
resulting number dependent frequencies are fit to a quadratic model.

extension of the cavity Ramsey sequence where in addition to scanning the delay time, the

cavity displacement α is also scanned. Although the value may be negligibly small, the n2

scaling with respect to the photon number will induce sensitivity to k when higher photon

number states are occupied in the resonator. Following the functional form from Supp. III

of Ref.39, the measured data is fit using the model

Pe(t) =
∣∣e−α2 ∑

n

1

n!
α2ne−itn(ω+kn/2)

∣∣2 (3.20)

to extract k/2π = 20± 1 kHz.

With these basic measurements to characterize the complete Hamiltonian in place, we

can determine the cavity parameters and coherence properties for conducting desired exper-

iments. Next, I will discuss another important feature of the dispersive coupling, that is an

otherwise linear oscillator inherits non-linearity which is sufficient to prepare any quantum

states in a superconducting cavity and perform universal control on it. I will mainly focus
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Figure 3.16: Cavity Kerr non-linearity measurement. Cavity Ramsey sequence per-
formed in Fig. 3.14 with added variation of the displacement amplitude. The Kerr non-
linearity can be determined by fitting to Eq. 3.20 which corresponds to the bending of the
curve seen above.

on two methods.

3.7.1 Selective-on Number Arbitrary Phase (SNAP) gate

Let’s first look at how the SNAP gate allows for universal control over a harmonic oscillator

by making active use of the dispersive interaction. A SNAP gate consists of a qubit drive

which forms a closed trajectory on its Bloch sphere such that the enclosed area imparts

a Berry phase57 on the system |g⟩ −→ eiϕ |g⟩. The induced phase is different from the

more familiar dynamic phase since the cyclic change of the qubit state is adiabatic i.e. the

duration of the drive pulse is long. In other words the qubit drive is weak compared to

χ. The evolution of the qubit is conditioned on the Fock state of the resonator, taking

|g, n⟩ −→ eiϕ |g, n⟩ Thus, the phase accumulation is differential between different Fock states

implying number dependent Berry phase. By interleaving cavity displacement drives with

SNAP gates, we can build quantum states in the oscillator by interfering differential phases.

For instance, a single SNAP gate and two displacement drives on the oscillator is sufficient

to create an |n⟩ = 1 Fock state in the cavity.

We can gain intuition for the protocol by considering a qubit trajectory that is along a

46



single axis, e.g. a 2π pulse along the qubit’s x-axis which accumulates a π phase shift on the

state. Therefore, if the pulse is number selective on the mth Fock state then the amplitude

Cm will change its sign. The next displacement will mix the neighbouring Fock states, which

may know be out of phase and therefore interfere non-trivially. In practice, the displacement

amplitudes are numerically optimized to maximize the fidelity of the final state54. Let’s look

at the combined application of these gates to create a Fock state. First, a displacement of

D̂(1.14) on the oscillator creates a coherent state in the cavity that has

|Ψ⟩c =0.522 |0⟩+ 0.595 |1⟩+ 0.480 |2⟩

0.316 |3⟩+ 0.180 |4⟩+O(0.1)[≥ 5].

(3.21)

The resolved π-pulse imparts a Berry phase ϕ = 2π on the |0⟩ state, leaving the cavity state

in

|Ψ⟩c =− 0.522 |0⟩+ 0.595 |1⟩+ 0.480 |2⟩

0.316 |3⟩+ 0.180 |4⟩+O(0.1)[≥ 5].

(3.22)

A final cavity displacement of D(−0.56) takes the cavity to

|Ψ⟩c =− 0.048 |0⟩+ 0.990 |1⟩+ 0.003 |2⟩

0.133 |3⟩+ 0.002 |4⟩+O(0.01)[≥ 5]

(3.23)

resulting in a sequence that can prepare the |n⟩ = 1 Fock state with probability P1 = 0.98.

However, in practice, SNAP does not prepare a perfect |n⟩ Fock state. During the number

selective qubit rotation which lasts for a duration ∼ 1
χ , the cavity and qubit are completely

entangled which can be comparable to the decay rates of the system. For our device, the

qubit’s coherence time in the memory experiment was observed to be T2,q = 50 µs, while

the duration of SNAP gate was chosen to be Tgate = 3 µs. A naive estimation of fidelity

F ∼ e−Tgate/T2,q would predict approximately 92% (check once) of the cavity to be prepared
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in the correct Fock state.

We experimentally test the SNAP gates to prepare |1⟩ and |2⟩ Fock states as shown

in Fig. 3.17. A qubit spectroscopy with a resolved π-pulse is performed to measure the

fidelity of the SNAP preparation step. While the cavity is mostly in |1⟩ Fock state, fitting

qubit spectroscopy to normalized Gaussian distribution under each peaks determines the

population of each Fock state (Pn) such that P0 = 5.3 ± 0.1%, P1 = 87.6 ± 0.1%, P2 =

3.4 ± 0.1% and all the other states below the noise level of our detection. We observe

leakages to neighboring Fock state due to imperfect interference caused by unwanted phase

accumulation by the cavity state and imperfect SNAP gate. By tuning the phase of the

cavity displacement drives we can reduce the leakage and improve the fidelity. However, I

would not recommend it, as is not a deterministic procedure and results in a wastage of time.

Recent results have shown further improvements in the preparation fidelity by numerically

optimizing the SNAP gate in the presence of systemic errors58.
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Figure 3.17: Examples of SNAP sequences to prepare Fock states in the cavity.
Resolved qubit spectroscopy after the application of SNAP gates interleaved between a series
of optimal cavity displacements. (a) Two displacement pulses on the cavity are separated by
a 3 µs long single number-selective 2π rotation that takes |g, 0⟩ −→ eiπ |g, 0⟩ via a geometric
phase. The qubit spectroscopy reveals the result of this preparation step with cavity mostly
prepared in |1⟩, P1 = 87.6 ± 0.1% and the neighboring Fock states occupying P0 = 5.3 ±
0.1%, P2 = 3.4 ± 0.1%, (b) Three displacement pulses on the cavity interleaved by two
number-selective 2π rotation that takes |g, 0⟩ −→ eiπ |g, 0⟩ and |g, 1⟩ −→ eiπ |g, 1⟩ as shown
on the left. Fitting a qubit spectroscopy reveals the population of each Fock state as P1 =
11.3± 0.1%, P2 = 81.3± 0.1%, P3 = 7.4± 0.1%.

Although the SNAP gates are intuitive to follow and easier to implement, their duration
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to prepare higher Fock state doesn’t scale favorably for our needs. To create a |n⟩ Fock

state, the sequence consists of a total of 2n + 1 operations, including n resolved π-pulses.

For instance, preparation of |2⟩ Fock state would take roughly 7 µs which introduces at least

7% error due to qubit decay itself. However, it is easier to implement them and measure the

cavity parameters.

3.7.2 Numerical optimisation methods to create quantum states

We can also accomplish universal control by considering the time-dependent Hamiltonian in

the presence of classical control fields. Both for solid state59 as well as cQED systems55,56, it

has been demonstrated that numerical optimization procedures can faithfully solve the inver-

sion problem of finding the optimal control pulses to prepare any non-classical state. In our

lab, a Gradient Ascent Pulse Engineering (GRAPE) method based package was developed

by Nelson et al.55 and is used to efficiently compute the qubit-cavity control pulses, ξ(t) to

transfer the system from quantum state A to B. Unlike SNAP gates to prepare Fock state,

where the intended operation can be decomposed into a set of individual gate sequences, in

a state transfer method, we may not necessarily find an equivalent decomposition of gates.

In some sense, it acts as a black box.

For our qubit-cavity system, we assume that the Hamiltonian can be written in the

following form:

H(ξ⃗(t)) = H0 +
∑
k

ξk(t)Hk (3.24)

and our goal is to synthesize the time-dependent control field envelopes ξ⃗(t). The success of

GRAPE crucially depends on the accurate model of the system, thus, it is very important

that all the terms in the Hamiltonian are accurately measured in the experiments. We

include the correction terms up to second order for both qubit and cavity to capture most

of the physics.
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Constraints in the optimization routine

The optimization problem we are tying to solve is generally under-determined, i.e. there are

many solutions ξ⃗(t) which achieve equally high fidelities. Thus, we can add additional terms

to the optimization cost function which provides an optimal solution against several other

requirements. Without going into the actual implementation in the code, a few of them that

I implemented are discussed below,

1. Pulse amplitude: The output power of the AWG is limited, this sets the maximum

amplitude for the pulse ξ(t) ≤ ξmax for all t. Of course, we can increase the power by

additional amplifier but it introduces noise and non-linearity in the dispersion relation.

2. Pulse bandwidth: There are multiple reasons why we might want to constrain the

bandwidth of a pulse. The AWGs have a maximum available bandwidth but more

importantly the mixer calibration and power variation is effected at large detunings

from resonance, causing non-linearities in the transfer function.

3. Intermediate photon number: The computational Hilbert space to solve the op-

timization problem grows exponentially with the number of levels considered in the

cavity number operator â. Thus, due to finite computing memory we are forced to

truncate the photon number up to ntr such that the dynamics relevant for the desired

state transfer occurs within the |0⟩ , |1⟩ , .... |ntr − 1⟩ subspace.

Once it returns a set of optimized control signals we can implement the complete in-

phase/quadrature (IQ) modulated microwave drives centered at the qubit (cavity) resonance

frequencies using arbitrary wave generators (AWGs). As an example shown in Fig. 3.19, we

start with a qubit and cavity mode in their respective ground states and apply OCT pulses

to transfer the state from |g, 0⟩ −→ |g, n⟩. We then perform a Wigner tomography of the

resulting state to reconstruct the complete density matrix. The timescale for the duration

of these operations scales with 1/χ and the fidelity of state transfer is ultimately limited by

the coherence time of the qubit.
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Figure 3.18: Cavity dynamics under OCT pulses. (L) Simulated cavity state evolution
using simulation tool QuTip. The cavity explores higher photon number during the course
before converging to the target state. (R) Measured cavity state in the experiment where
the dynamics follows the simulation closely. The qubit spectroscopy reveals a single peak
confirming the preparation of |n⟩ = 3 Fock state.

Comparing simulations to experiments

Before we experimentally test these OCT pulses, we can check their performance using

simulation tool QuTip60,61 and observe the dynamics of the cavity as it evolves in time.

In Fig 3.18, I show the simulated and measured trajectory of the cavity state under the

application of OCT pulses to prepare |n⟩ = 3 Fock state. We can verify that (a) higher Fock

states are occupied during the state transfer (b) the trajectory converges to the target state.

By comparing the peak value w.r.t to the |0⟩ peak, we estimate the preparation fidelity to

be 88%.

It is worth noting that not all OCT pulses work as intended and there is a feedback loop
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which helped me collect a set of pulses which showed reasonable performance on the real

device. I would recommend readers to refer Philip Reinhold’s thesis62 which goes over the

debugging in a systematic manner. A few minor convention problems that I would like to

address here are - it is very easy to forget a factor of 2π here and there, so once must be

consistent in the definition of the drive Hamiltonian as defined in the OCT package and the

actual experimental implementation. Second, make sure that the drive Hamiltonian has the

correct phase between the real and imaginary components, for e.g. â+ â† or â− â†. In order

to truly achieve very high preparation fidelity a closed-loop optimization would be ideal but

the long memory lifetimes of the cavity makes it infeasible.
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Figure 3.19: Example of an OCT pulse to prepare Fock states. (a) A set of optimal
control pulses simultaneously driving the qubit and cavity to implement a non-trivial state
transfer from a vacuum state |n⟩ = 0 to |n⟩ = 1 Fock state. Solid and dashed lines represent
the in-phase and quadrature-phase component respectively of the control fields. (b) Wigner
tomography is performed before and after the application of OCT pulses. It measures the
parity after displacing the resultant state with an amplitude β. The left plot corresponds to
the vacuum state of the cavity with a blob centered at the origin. On the right, it has a -1
value at the origin since |n⟩ = 1 is an odd parity state. Its radial symmetry indicates the
lack of a well-defined phase for single Fock states.

We compare the Fock state preparation fidelity from spectroscopy distribution (see Fig.

3.13) to density matrix reconstruction method which are in good agreement for |1⟩ Fock
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state. We extract the fidelity of the state preparation from density matrix reconstruction

and qubit spectroscopy both giving P1 = 94± 1%. The major sources of error are imperfect

DAC calibration, uncertainty in χ measurement and qubit being left in |e⟩ at the end of the

OCT sequence. Higher order correction to the Hamiltonian terms start to dominate as we

prepare higher Fock state and the GRAPE method does populate the higher excited levels

of the cavity as seen in Fig. 3.18.

QNDness of repeated number resolved qubit measurements

In an earlier section, I discussed the QNDness of a dispersive measurement of the qubit

state. Similarly, for the storage cavity which is dispersively coupled to the transmon, we

assume that the measurement of cavity state via a parity or number resolved π-pulse does

not perturbed the state i.e. it is a quantum non-demolition (QND) measurement or in other

words, does not induce additional relaxation in the cavity mode. However, in order to confirm

the same, but, in the context of number resolved qubit measurement, we follow the method

described in50, where we perform a cavity T1 experiment interleaved with varying number

of repeated number resolved qubit measurements during the delay time. In that experiment,

the total relaxation rate was modeled as a combination of the bare storage lifetime τs and

a demolition probability pd associated with each qubit measurement. In Fig. 3.20, we show

the extracted total decay time (τtot) and demolition probability pd = 2.6± 0.02% as shown

by the fit. In other words, a single number resolved qubit measurement is 97.4% QND. For

|n⟩ = 2, we measure the demolition probability pd = 4± 0.04%, higher by a factor of 2. The

measured demolition probabilities are listed in Table 3.1. This is an important measurement

and will be very relevant when we write down the HMM analysis for the stimulated emission

experiment. Interestingly though, we do not observe any additional loss in the cavity state

if the number resolved π-pulse is off-resonant.
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Figure 3.20: QNDness of storage cavity measurement. Storage cavity T1 measurements
were performed with repeated number resolved qubit measurements interleaved during the
delay time with a variable repetition interval time τrep. The extracted total decay time
was fit to a model 1/τtot = 1/τs + pd/τrep. From the fit (red line), we infer a demolition
probability per readout of pd = 2.6% corresponding to a QNDness of 97.4%, which is a
bit lower than reported for a parity protocol50. The natural decay time of the storage
τs = 1360 µs is indicated by a dashed grey line.

|n⟩ τs(µs) pd σpd
|1⟩ 1360 0.026 0.002
|2⟩ 660 0.040 0.004
|3⟩ 527 0.10 0.05
|4⟩ 319 0.074 0.012

Table 3.1: Cavity state demolition probability. Measured lifetime of the different Fock
states and their fitted demolition probability with error bars. pd can be approximated with
a linear dependence on n.

3.8 Josephson Parametric Amplifier

Another device which has found very useful application of the non-linearity provided by the

Josephson junction is a Josephson Parametric Amplifier or JPA for short. For detailed and

rigorous demonstrations of JPA, I refer the reader to63,64,34.
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3.8.1 principle of operation

In a simple harmonic oscillator, the phenomenon of parametric gain may be achieved by

modulating one of the parameters which governs its resonance frequency ω0 periodically in

time. The source of energy required for this modulation is provided by the “pump”, and

the oscillator when operating in this regime is called a parametric amplifier. The underlying

principle of parametric gain is the energy transfer between the pump and Fourier components

of the oscillator’s motion with fixed phase relationships to the modulation. In a degenerate

amplifier, where the signal (ωs) and idler frequencies (ωi) are the same, the component of

oscillations in phase with the pump (ωp) is linearly amplified while the orthogonal component

is de-amplified. The frequencies of the pump, signal and idler follows energy conservation

relationship wherein, the JPA could be operated in a “four-wave mixing” mode (charge-

pump) or “three-wave mixing” mode (flux pump). In a four-wave process, the frequencies

follow the relationship,

ωp + ωp = ωs + ωi, (3.25)

whereas, in the case of a three wave mixing process,

ωp = ωs + ωi, (3.26)

In other words, two pump photons mixes in a four-wave mixing process, whereas, in a three-

wave mixing process a single pump photon is split into one signal and one idler photon. The

JPAs used in my experiments operate in the degenerate mode and thus, I will restrict my

focus to the JPAs where parametric gain is obtained using Eq. (3.4) and Eq. 3.25, with a

pump tone close to its resonance frequency, ω0.

A parametric amplifier consists of electrical elements such as an inductor L and a capac-

itance C connected in parallel such that the resultant Hamiltonian is of the form

H =
1

2
CV 2 +

1

2
LI2, (3.27)
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where ω0 = 1
√
LC. The parametric process is realized by modulating the inductance of

Josephson junction. Recall Eq. 3.3 where, LJ = L0 + ∆L(I/I0)
2, and by modulating the

current I with a sufficiently intense pump tone at ω0 will create the desired 2ω0 modulation

of the inductance to achieve parametric gain. Such a drive results in a four-wave mixing

process.

In practice, the JPA has several important advantages. First, by fabricating the whole

device out of a superconductor, we get a low loss device which makes it easy to realize a

design in which the only noise added by a JPA operating in phase-insensitive mode (check it

for phase sensitive) is the input noise at the image frequency. A second advantage is the tun-

ability: there exists an intimate relationship between the Josephson phase and the magnetic

flux which causes the quantization of the net magnetic flux through a superconducting loop.

This implies that a SQUID loop (a pair of JJ connected in parallel with superconducting

leads) acts like a single JJ with an effective critical current

I S0 ≈ 2I0| cos(
πΦ

Φ0
)| (3.28)

where Φ is the magnetic flux threading the SQUID loop65. We can exploit Eq. (3.28) in

a different way and use SQUIDs instead of Josephson junctions in the design of a JPA.

Application of a DC flux adjusts LJ and thus the resonant frequency, making the JPA

flux-tunable. However, due to the intrinsically resonant nature of a parametric amplifier,

the operating bandwidth is generally narrow (10s of MHz) but sufficient for most readout

applications. Moreover, the flux tunability allows seamless integration of JPAs, greatly

benefiting the haloscope type search.

3.8.2 Design and Fabrication

The schematic of a JPA is shown in Fig. 3.21, it is a lumped element single-port resonator

comprising an interdigitated capacitor C, an array of N=4 SQUIDs, and a small capacitor
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Cc to couple to a 50Ω transmission line. We closely followed the design philosophy from35

to keep the design simple and reliable.

The JPA functions in a reflection mode as indicated by the single port. In order to

minimize the loss, the JPA is always over-coupled to the transmission line, and the Q-factor

is determined by the coupling capacitor Cc. The resonance frequency of this circuit is given





C�

C� L�

Figure 3.21: Schematic of a JPA circuit. (Left) A circuit diagram representing the
elements in a JPA device. It consists of a coupling capacitor (Cc) which is over-coupled to
the transmission line. The signal enters and exits through the same port after amplification.
The resonator consists of a fixed capacitor (Cg) in parallel to tunable inductor (LJ ) formed
by a series of SQUID loops. The SQUID loops are inductively coupled to an on-chip flux
bias line which carries DC current to tune the resonance frequency. (Right) Microscopic
image of the fabricated device. A 50Ω transmission line carrying the signal, capacitively
coupled to the LC circuit. A magnified image of the SQUID array is shown to the right. A
waffled surrounding superconducting ground plane is patterned to pin magnetic flux vortices
in place and isolate the SQUID array.

by ωJ = 1/
(√

(LJ + L0)(Cg + Cc)
)
, where L0 is geometric (linear) inductance (approx.

10 pH µm−1). We perform finite-element electromagnetic simulations in HFSS tool to estimate

and optimize the circuit parameters to achieve a maximum target frequency (at Φ0 = 0).

The device is fabricated on a 7mm × 7mm × 0.43mm Sapphire chip coated with a 75 nm

thick Nb metal as the base layer. Photo-lithography tool (Heidelberg MLA150) was used

to pattern the large structures followed by an electron-beam lithography (Raith) to pattern

the Josephson junctions. The SQUIDs were fabricated with a double-angle evaporation
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technique using Plassys tool. Finally, the resistance of a single SQUID junction is measured

at room temperature to infer the expected LJ given by Ambegaokar–Baratoff formula66.

For a maximum frequency of 13.2GHz, we chose Cg = 0.196 pF, Cc = 0.03 pF, L0 = 0.4 nH

and LJ = 0.24 nH, corresponding to room temperature resistance of 70Ω per SQUID loop.

The desired chip is mounted in a copper sample box which routes the signal and flux bias

via SMA port as shown in Fig. 3.22. It also helps thermalize the chip and shield it from

blackbody radiation emitted by higher temperature stages of the dilution refrigerator.

I had designed a simple copper box shown in Fig. (3.22) to characterize the JPA at

miliKelvin temperature. The two SMA pins carry the signal and pump (left) whereas the

one on the right carry the DC flux bias to tune the frequency. The JPA chip itself is finally

coupled to the SMA ports through wirebonds and care must be taken to reduce the loss as

much as possible.

Figure 3.22: JPA in a box. (a) Microscope image of a JPA chip mounted inside a copper
box. Two SMA ports wirebonded for routing signal and flux bias to the device.

3.8.3 Test and Characterization

The JPA characterization involves checking the flux response, finding optimal bias point,

measuring the gain profile and noise performance. To characterize the flux response of a

JPA, we supply current to an on-chip flux bias line (See Fig. 3.21) using a low-noise voltage
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supply (YOKOGAWA GS200) and measure the phase response of the resonator using a Vector

Network Analyzer (VNA). The current applied to the on-chip flux line induces an effective

flux which threads the SQUID loop and thus, varying the current changes the effective LJ

(Eq. (3.4)) which tunes the resonant frequency as shown in Fig. 3.23.
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Figure 3.23: Flux-scan of the JPA resonance frequency. ωJ/2π vs. bias current
IΦ ∝ Φ. In an ideal lossless case, the JPA will not show any features in the magnitude
response but in phase as shown above.

Using Fig. 3.23 as a reference, we can now bias the JPA to the desired frequency and

start optimizing the gain profile. We use the charge drive (four-wave mixing) to pump the

JPA. The biasing procedure start with setting the resonator frequency, typically 200MHz

higher than the pump frequency (ωJ ∼ ωp + 2π × 200MHz). While the pump tone is off,

we record the transfer function of the full signal path and use it as a reference. Next, the

pump power is slowly increased to achieve 3 − 5 dB of gain around the pump frequency.

The pump power is slowly adjusted to obtain a maximum gain curve. We then adjust the

flux bias to further increase the detuning and achieve a larger gain profile. These two knobs

of increasing the detuning and pump power are iteratively turned until a maximum gain of

20 dB is achieved at the pump frequency. Fig. 3.24 shows a typical gain curve, fitted to a

Lorentzian function with a 3 dB bandwidth of 10MHz. In the next chapter, I will explain

how we can use the dispersive interaction between the readout and the transmon to estimate
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the noise performance of a JPA.

7.78 7.80 7.82
Frequency (GHz)

5

8

11

14

17

20

Ga
in

 (d
B)

10 MHz

Figure 3.24: Measured gain of the JPA. Gain profile of the JPA as a function of the
signal frequency. The exact curve gain is well approximated by a Lorentzian function (red)
to extract the 3 dB bandwidth, ∆νJ = 10MHz.
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Chapter 4

Noise temperature measurement

Microwave signals originating from a resonator in a cryogenic environment is at least an

order of magnitude lower than the noise level associated with the measurement. Hence,

detection of such weak signals is a primary task in the field of quantum technology. These

microwave resonators operate at miliKelvin bath temperatures in order to reduce the thermal

occupation of a resonator. It is thus essential to amplify the signal adding as little noise

as possible. However, quantum mechanics imposes constraint on the minimum amount

of noise that an amplifier must add to satisfy the Heisenberg uncertainty principle67,32.

While amplifiers based on the conventional semiconductor technology add much more noise,

ultra-low noise amplifiers have been developed exploiting the non-linearity of Josephson

junctions. Josephson Parametric Amplifiers (JPAs) are widely used in the circuit-QED field

to achieve single shot readout of the qubit state without averaging. JPAs are also deployed in

dark matter haloscope experiments like ADMX, HAYSTAC to measure the axion conversion

power coming out of a tunable microwave cavity. One of the most important parameter

which determines the success of a haloscope search as defined by Eq. 2.14 is the total noise

Nsys. Therefore, it is critical to study and estimate the noise performance of readout chains

performing such sensitive measurements.

An amplifier is rated by its power gain (G, amplification factor), bandwidth (∆ν, fre-

quency band over which it amplifies) and noise temperature (TN , added noise). The noise

performance can be expressed as a noise temperature, i.e., the noise added by an amplifier

to a signal that is equivalent to that of a matched resistor of thermodynamic temperature

T . In this chapter, I will begin with a discussion of the noise added in an amplification

process and explain the lower limits imposed by quantum mechanics. Next, I will discuss

common methods to measure the noise temperature of a RF chain. In particular, I will de-

scribe the procedure to calibrate the noise temperature of a JPA using a qubit as a primary
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thermometer.

4.1 Sources of noise and their limits

Noise is a complimentary parcel provided by the nature while observing any phenomenon.

We, as humans, have studied and developed sophisticated tools to suppress unwanted noise

and unravel the useful information. A quick example is noise-cancelling headphones which

suppresses the unwanted pulse tube noise as I write this section while sitting in the lab.

From a scientific perspective, we classify classical noise arising in electrical circuits into

two: (a) Shot noise and (b) Johnson noise. In 1918, a German physicist Walter Schottky

identified and formulated a theory of “tube-noise” - a fluctuation in the current caused by

the granularity of the discrete charges composing it. One decade later, Johnson and Nyquist

studied a different type of noise- one caused by the thermal fluctuations of stationary charge

carriers.

For cavity based experiments, the Johnson (thermal) noise is always present and associ-

ated with the resistance of the cavity walls. At finite temperature, the thermal motion of

electrons causes power dissipation in an imperfect conductor, and these fluctuating currents

imply the presence of fluctuating electromagnetic fields inside the cavity volume. Using a

simple thought experiment, Robert Dicke showed that the voltage noise on an antenna re-

ceiving blackbody radiation is completely equivalent to the Johnson noise of a matched load

at the same temperature68. Thus, we can write the noise power dissipated in any bandwidth

∆ν as,

P = kBT∆ν (4.1)

resulting in a power spectral density of

S(ν) = kBT (4.2)

The independence of noise spectral density with frequency is valid under the condition

62



that kBT ≫ hν and should be modified to account for the quantum effects at low tempera-

ture to

S(ν) =
hν

2
coth

hν

kBT
(4.3)

using the fluctuation-dissipation theorem69. In the Rayleigh-Jeans limit (kBT ≫ hν), one

can recover Eq. (4.2) by approximating coth x ≈ 1/x for small x. However, in the Wein

limit kBT ≪ hν, where quantum effects are prominent and setting cothx ≈ 1, for large x,

we find

S(ν) =
1

2
hν (4.4)

This corresponds to half-a-photon worth of noise originating from the zero-point fluctuations

(ZPF) of an electromagnetic field. In a later section, we will see how it manifests in real

measurements and limits our measurement capabilities.

Based on our discussion so far, we can write the most general expression for the system

noise temperature of a haloscope at physical temperature T coupled to a coherent receiver,

kBTsys = h ν Nsys = h ν

(
1

ehν/kBT − 1
+

1

2
+NA

)
(4.5)

The first term on the RHS represents the actual thermal noise, which is proportional to

the average number of blackbody photons inside the cavity at physical temperature T . The

second terms is quantum noise associated with the ZPF (Eq. 4.4) of the fluctuating field.

The last term NA corresponds to the total added input noise by the amplifier itself.

At sufficiently low temperatures, kBT ≪ hν, the thermal occupation is exponentially

suppressed and quantum effects dominate. Thus, the total noise is independent of the phys-

ical temperature T . Quantum noise arises from the fact that the two quadrature amplitudes

we are trying to measure do not commute with the Hamiltonian, and have to pay a hefty

penalty for such coherent detection. Unfortunately, quantum mechanics takes its price not

once (in second term) but twice. So far, we have ignored the third term representing the total

added noise NA, which is the sum of thermal and ZPF noise of the idler mode. The output
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of a linear amplifier is just the input signal multiplied by gain G ≫ 1. The energy required

for amplification is provided by some source, and thus, the amplifier mixes the signal and

idler into the same output port, coupling noise to the output signal.

The total output noise power of an amplifier connected to an impedance-matched source

with an effective temperature T0 is given by,

Pout = GkB(T0 + TA)∆ν (4.6)

where, TA is the noise added by an amplifier and can be interpreted as the increase in noise

temperature of the source impedance during the amplification process. It should be noted

that this additional noise would have to be present at the input of an ideal noiseless amplifier

with gain G to reproduce the noise we actually observe at the real amplifier’s output. In

case of a JPA, it can be thought of as the temperature of the idler mode.

In a cascaded chain of linear amplifiers, each with gain Gi and noise temperature TAi
,

it is easy to see that the output noise of the preceding stage acts as the input noise for the

following amplifier and thus, the net input-inferred added noise of the chain will be

NA = NA1
+

1

G1
NA2

+
1

G1G2
NA3

+ .. (4.7)

From Eq. (4.7), we can infer that the noise performance of the full receiver chain is deter-

mined by first amplifier, provided it has sufficiently high gain G1. Now, we may naively think

that with a careful design of an amplifier we can make the added noise arbitrarily small,

however, Haus and Caves proved32 that a phase-sensitive linear amplifier must contribute

NA ≥ 1/2 (4.8)

noise quanta to the output signal. In this section, we learnt that the input quantum noise
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and the Haus-Caves theorem together imply the Standard Quantum Limit (SQL)

Nsys ≥ 1 (4.9)

which may be parameterized in the temperature units as

TSQL = (h/kB)νc ∼ 480mK (4.10)

for νc ∼ 10GHz. Other factor which we have not discussed but will effect the total noise

performance of the receiver chain is the transmission loss between the device and a pre-

amplifier. We ought to reduce this loss by keeping the RF path short and must be taken

into consideration while designing either a haloscope or a qubit-based readout.

This summarizes our discussion about the sources of noise and the limits posed by quan-

tum mechanics. In the next section, I will briefly describe the various methods used to

determine the noise temperature of a linear amplifier. I will particularly focus on how a

narrow-band accurate microwave power calibration can be implemented using the ac Stark

shift of a qubit to measure the noise temperature of a JPA.

4.2 Calibration of noise temperature

There are various methods developed to estimate the noise performance of a microwave am-

plifier chain. In this section, I will discuss their implementation, complexities and challenges

associated with each.

4.2.1 Y-factor method (Hot-cold load method)

As the name suggests, we place an impedance matched resistor with a “hot” temperature

TH as the input noise source of an amplifier and the amplified output noise NH is recorded
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using a spectrum analyzer in a specified bandwidth 1. A heater is attached to this hot-load

such that it’s temperature can be controlled by applying current to it. We then repeat the

previous step at a vastly different temperature TC corresponding to Johnson-noise NC . Y-

factor is defined as the ratio of the output noise powers Y=NH/NC and can be used to the

calculate the noise temperature of the amplifier with the following equation:

TA =
TH − Y TC
Y − 1

(4.11)

Figure 4.1: Wiring diagram for a Y-factor measurement. Schematic of a noise source
with heater to measure gain and noise of the output chain. The hot load is thermally
anchored to a higher temperature stage to prevent the heat from raising the temperature
of mixing chamber. A switch bypasses the cavity to route the noise generated by hot load
whose temperature is varied by varying the current on a heater attached to it. The output
power is then digitized with a spectrum analyzer. Image credits: ADMX

One can build a microwave cryogenic noise source using a well characterized resistor70,71

or purchase a commercial one from BlueFors72. Before we move on, I should also mention

a few technical challenges associated with the Y-factor method: (1) impedance mismatch

1. The resolution bandwidth is chosen such that the noise floor is at least 20 dB below the measured
background.
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between the hot and cold source signal pathways could lead to systematic errors, (2) uncer-

tainty of the temperature values could lead to fitting errors in the regime where the amplifier

noise temperature is lower than the cold load, (3) poor thermalization of the load resistor

could lead to over-estimation of the calculated noise temperature (4) ensure that the noise

power is sufficiently below the critical power of a JPA otherwise, it may lead to significant

variation in the gain or even unstable performance.

I built an analysis tool for the ADMX using hot-cold load method to calibrate the system

noise temperature as well estimate the attenuation in the signal path between the cavity

and the JPA. This study also helped us examine the effect of magnetic field on the noise

performance of high-electron-mobility transistor (HEMT) amplifiers used at the second stage.

The tools and results are used to set axion sensitivity limits since then73,23,17.

4.2.2 Primary thermometer

In the previous section, we discussed how uncertainty in a secondary thermometer could

lead to imprecise estimation of noise temperature. Thus, it is desirable to have a primary

thermometer whose temperature is related to other measurable quantities through a known

physical law. This eliminates the need for initial calibration and the possibility of calibration

drift in the sensor under varied conditions. Almost all of the thermometers used in our lab

are secondary, meaning they are either pre-calibrated by a vendor or calibrated in our lab

using some primary thermometer. One such device called a Shot Noise Thermometer

(SNT)74 is based on the electrical noise across a tunnel junction which is “related to the

voltage across the junction by a relative noise measurement with only the use of electron

charge, Boltzmann’s constant, and the assumption that electrons in a metal obey Fermi-Dirac

statistics”.

The shot noise tunnel junction is based on a regular Josephson junction formed by

Al− AlOx − Al with nominal resistance 50Ω such that it is impedance matched to the

microwave electronics. A local permanent magnet is added to keep the aluminum in a nor-
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mal metal state at the miliKelvin temperatures. In theory, we could use any normal metal

but in practice, I believe it is difficult to make 50Ω resistors whose resistance will stay close

to this value even below 1K.

In general, the amplifier has a frequency-dependent gain G(ν) and noise temperature

(Tsys(ν)) and we can fit the total noise power74 to

P (V, ν) = G(ν) kB ∆ν

[
Tsys(ν) +

1

2

(
eV + hν

2kB

)
coth

(
eV + hν

2kBT

)
+

1

2

(
eV − hν

2kB

)
coth

(
eV − hν

2kBT

)] (4.12)

where V is the voltage applied to the SNT and ν is the frequency at which the power is

measured in a bandwidth ∆ν. As shown in Fig. 4.2, the fit determines gain G, system noise

temperature Tsys and system temperature T . In the high voltage limit, tEq. 4.12 results in

Figure 4.2: Response of a SNT as a function of applied voltage. (a) Output noise
power (black squares) of the amplification chain at room temperature (298K). The red
curve corresponds to the fit of the data to Eq. 4.12. (b) Similar response at low temperature
(23mK). Linear fits described by Eq. 4.13 can be used to extract gain and system noise
temperature. Figure adapted from Tanay Roy’s thesis75.

a linear relation between the output power and frequency given by

P (V, ν) = G(ν) kB ∆ν

(
Tsys(ν) +

e|V |
2kB

)
. (4.13)

We can extract G(ν) and Tsys(ν) by fitting a linear curve. Before we move on, I would like
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to point out a few considerations while integrating SNT with a microwave receiver chain

• Achieving 50Ω impedance is non-trivial in junction fabrication and as explained earlier,

any differences would introduce systematic uncertainties.

• In many applications, the output noise power of SNT is found to saturate the JPAs

thus, a well thermalized attenuator before the amplifier input may be helpful.

• The SNT junction is very sensitive to electro-static discharge (ESD) and thus, requires

very careful handling.

In summary, the simple calibration routine and accurate measurement of the receiver chain

is a strong selling point to implement the SNTs. I would like to take this opportunity and

thank Joe Aumentado (NIST) for graciously offering SNT to characterize our microwave

chains.

4.2.3 Qubit as a thermometer

In the discussions so far, we have used broadband noise sources as an input-noise source to

an amplifier but in most applications, we are only interested in the noise performance of

our receiver chain in a narrow-band. In this section, I will describe a narrow-band power

calibrator comprising a superconducting qubit dispersively coupled to a readout resonator.

We implemented this method following76–78 which is widely used in the superconducting

qubit industry.

I would refer the reader to section 3.4 and just highlight the interaction between a trans-

mon dispersively coupled to a readout cavity: photon number dependent shift in the qubit

frequency, given by ∆ν = n̄r×χq,r. We can perform a Ramsey interferometry experiment to

accurately determine the shift in qubit frequency and thus, infer the mean photon occupa-

tion in the readout. Given the stability of qubit transition frequency and also the microwave

sources, we can easily achieve ppm resolution in frequency which makes the uncertainties if

not smaller, comparable to the SNT.
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1-Photon calibration

We perform a Ramsey type experiment where we introduce a readout pulse with varying

amplitude (normalized to the actual readout amplitude) during the wait period in-between

two π/2 pulses. The shortest wait period is chosen such that the readout cavity reaches

its steady state, in this case τmin ≥ 2T1,r. As expected, we see the Ramsey oscillations

smear out as we inject more photons in the readout Fig. 4.3. By fitting an exponential

decay function with an oscillating term we can extract the shift in qubit frequency and the

dephasing time, T ∗
2 . The shift in the qubit frequency is related to the photon number as:

∆ν = χq,r n̄ = χq,r (λA
2) (4.14)

where, λ is a proportionality constant between the applied amplitude and the photon number.

The additional dephasing is given by the rate

Γn =
8 n̄ κ χ2q,r

κ2 + 4χ2q,r
(4.15)

where κ and χq,r can be inferred from Fig. 3.3. From Fig. 4.4 (b) we estimate the mean

photon number in the readout, n̄r = 2.17 ± 0.05, which implies that we perform our high-

fidelity single-shot qubit readout with approximately 2 photons.

We play a continuous readout tone and record the noise power on a spectrum analyzer

with a resolution bandwidth (RBW) B. The signal-to-noise ratio (SNR) is given by,

SNR =
S

N
=

n̄r h ν κ

kB Tsys B
(4.16)
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Figure 4.3: Qubit Ramsey as a function of the input readout power. The x-axis
corresponds to the delay time between two π/2 pulses during which a readout pulse is played
with an amplitude, A corresponding to the y-axis. At high input power, the oscillations start
to fade away. Using square-law equation, the input power Pin ∝ A2 is proportional to the
mean photon number n̄r.

Eq. 4.16 implies

Tsys =
2.17 ∗ (6.626× 10−34) ∗ (7.7894× 109) ∗ 1

233∗10−9

(1.38× 10−23) ∗ (10× 103) ∗ 10
SNR
10

= 3.27K

(4.17)

The estimated Tsys seems reasonable assuming the quoted noise temperature of 2K by

the manufacturer (Low-Noise Factory). It implies that there is approx. 3 dB of loss between

the readout port at MXC stage and the LNF amplifier at 4K stage. There are 3 circulators

in-between which contributes at least 3× 0.4 dB of loss and additional losses arising due to

short normal metal RF cables. Now, we can use this estimated system noise temperature

and record the improvement in SNRi = (Son/Non)/(Soff/Noff ) after we turn the JPA on.
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Figure 4.4: 1-Photon amplitude. (a) Dephasing rate as a function of the input readout
power. The curve is fit to Eq. 4.15 to extract the scale factor λ. Notice that the fitted line
passes through origin implying that the residual population in the readout is approaching
zero. (b) Shift in qubit frequency as a function of the input readout power. The horizontal
green dashed line represents the shift, χq,r we expect for n̄ ∼ 1 and the vertical dashed line
corresponds to 1-photon input power as given by the fit.

The noise temperature of the JPA can be computed from the following expression:

T JPA
N (ν) = Tsys(ν)

[
1

SNRi(ν)
− 1

GJPA(ν)

]
= T JPA

sys (ν)−
Tsys(ν)

GJPA(ν)

(4.18)

where GJPA = Son/Soff is the gain of the JPA. We can quickly check that Eq. 4.18 follows

Eq. 4.7 and we infer the total system noise temperature with JPA on as TJPA
sys (ν). From

Fig. 4.5, we can compute the gain when the JPA is on vs off to be ∼ 14.34 dB and the

improvement in SNR to be roughly 5.76 dB. Using Eq. 4.18 and plugging the computed

quantities, we estimate the noise temperature of the JPA to be 0.771K. The quantum

limited noise at 7.789GHz is roughly 360mK, which implies our JPA is operating at roughly

50%efficiency.
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Figure 4.5: SNR improvement with JPA added to the readout chain. Plotting the
measured power as a function of the detuning from the readout resonator frequency with
the JPA on vs off. The JPA is biased at 14 dB gain to optimize the qubit readout fidelity.
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Chapter 5

Single Photon Counter

In the last chapter, we discussed how the frequency of a transmon shifts depending on the

number of photon present in a resonator. In the present chapter, I will describe how we

can build a photon counter which is resilient to errors caused by the external environment.

Next, I will discuss an application of such a low-background detector to search for hidden

photons with an unprecedented sensitivity. In the end, I will discuss the optimizations I have

implemented on the RF measurement chain to drastically improve our readout SNR and the

duty cycle of the photon counting protocol. Parts of this chapter are adapted from20,42.

5.1 Meet the device

The photon counting device consists of a transmon cavity which is dispersively coupled

to a high-Q storage cavity and low-Q readout cavity as shown in Fig. 5.1. The entire

cavity is machined out of a 6N (99.9999%) monolithic aluminum block using a flute1 method

developed in our lab39. This method ensures exceptionally low-dissipation seam-loss and

one can easily achieve internal Q-factor ¿ 100 Million (T s
1 ∼ 10ms).

I will refer the reader to excellent resources for designing cQED components and skip

the details here but mention key considerations to keep in mind while designing a photon

counter type device.

1. Interaction rate: sets the time to detect the photon but also limits the lifetime via

Purcell79 decay. Thus, a balance is necessary for optimal application use.

2. Frequency hierarchy: In order to isolate the qubit from external environment, the

qubit frequency is designed to be below the fundamental modes of both the storage

and the readout.

1. Because of the hole pattern resemblance to a flute.
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(a) (b)

Figure 5.1: Photon counting device. The transmon is simultaneously coupled to a high-Q
storage cavity and low-Q readout cavity. The storage cavity sources the dark matter photon
and the readout cavity measures the state of the transmon. (b) 3D render of the design
which is machined using a CNC machine and a transmon qubit fabricated on a sapphire
chip.

3. Fast readout: The readout cavity is strongly coupled to the transmission line for a

fast qubit measurement and thus, a dominant source of noise. An effective rf-filtering

scheme must be developed to suppress any radiation from leaking in.

5.2 Quantum Non-demolition interaction

In section 3.6, I briefly mentioned that the dispersive interaction between the qubit and

cavity is QND, meaning that the qubit state is unperturbed during the act of measurement.

Similarly, the cavity state is left unchanged during operations on the transmon. If we stare at

Eq. 3.9, we realize that the interaction term (χâ†â σ̂z2 ) commutes with the bare Hamiltonian

of the cavity (ωcâ
†â) and the qubit (ωq

σ̂z
2 ). The act of cavity state measurement due to

interaction with a qubit collapses/projects the cavity to a Fock state, without absorbing or
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destroying the cavity state. And hence, we can measure the resultant cavity state multiple

times.

Ideally, a parity measurement tells us the presence of a photon in the cavity. However,

the measurement is corrupted due to various possible errors that could result in inefficiencies

or worse, false positive detection. The errors are caused by spurious qubit excitation, decay

and dephasing, cavity decay and incorrect readout signal. In a typical transmon-cavity

system, these errors occur with probabilities of the order 0.1 − 5% which is much greater

than the potential dark matter signal induced probability. We take advantage of the QND

interaction in order to mitigate the effect of these errors on detector inefficiency and false

positive probability.

Trials
0

1

Pa
rit

y

|n = |0

False positive

Trials

|n = |1

False negative

Figure 5.2: Spurious parity jumps. (Left) shows the measured parity when there is
no photon in the cavity and a false positive event where the parity changes to 1. (Right)
measured parity when the cavity is prepared in |n⟩ = |1⟩ Fock state with few jumps to 0
leading to inefficient detection.
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5.3 Repeated measurement protocol

The repeated parity measurement protocol is depicted in Fig. 5.3s. It starts with adding a

coherent state |α⟩ in the storage cavity followed by a set of repeated parity sequences with a

delay between each measurement. The delay is important to let the readout resonator relax

back to its steady state otherwise it may cause the qubit resonance frequency to shift and

thus, the next π/2 pulse will be erroneous.

Each experiment comprises of N + 1 = 31 parity measurements returning a readout

sequence (R′,R∞, ....,RN ) which is fed into a Bayesian analysis80–82 to reconstruct the

initial state of the storage cavity.







𝒟(α)

X





τ
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𝜋
χ
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Figure 5.3: Photon counting protocol. Repeated parity measurement protocol with
cavity prepared in a coherent state. It consists of injecting a variable number of mean photons
in the cavity followed by repeated parity measurement of the photons using a transmon qubit.
The parity sequence consists of two π/2 pulse separated by a time τ = π/χ followed by a
qubit readout.

5.4 Hidden Markov Model Analysis

We developed a Hidden Markov Model (HMM) to reconstruct the cavity state at the begin-

ning of the experimental sequence. This analysis tracks all the possible transmon and cavity

states and their imperfect measurements that would result in the observed readout sequence.

It consists of hidden states, their signatures, transitions between hidden states, and emission

of hidden states. In our case, the hidden state refers to the joint qubit and cavity states
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which are measured via the readout signal. For the photon counting experiment, we are

interested in cavity states2 n ∈ [0, 1] and qubit states q ∈ [g, e] so the possible hidden states

are S ∈ [0g, 1g, 0e, 1e]. Similarly, the observed qubit state due to imperfect readout is given

by R ∈ [G, E ].

Now, let’s discuss the components of the HMM namely the “transition matrix” T and

the “emission matrix” E which describes the possible evolution of the joint qubit-cavity

state (S) between successive measurements and the possible readout outcomes for a given

qubit-cavity state respectively. The transition matrix is written as below

T =

|0g⟩ |1g⟩ |0e⟩ |1e⟩


P00Pgg P00Pge P01Pge P01Pgg |0g⟩

P00Peg P00Pee P01Pee P01Peg |01⟩

P10Pgg P10Pge P11Pge P11Pgg |1g⟩

P10Peg P10Pee P11Pee P11Peg |1e⟩

(5.1)

where the probability of a hidden state Si −→ Si+1 is given by TSi,Si+1
.

1. Cavity transitions: There are two processes that can change the cavity state be-

tween successive measurements: decay and heating 3. Each measurement of the cavity

projects it into a number state and in between two measurements, the cavity state

evolves for a time, tm = 10 µs.

• Cavity decay: Over the course of tm the probability of cavity to decay from

|1⟩ −→ |0⟩ is given by P10 = 1− e−tm/T s
1 , where T s

1 is the cavity decay time.

• Cavity heating: The probability of spontaneous cavity heating |0⟩ −→ |1⟩ toward

the steady state population, n̄c, is given by P01 = n̄c(1− e−tm/T s
1 ).

2. We will generalise this in Chapter 6 for higher Fock states.

3. We have not included cavity dephasing (or coherence) as it is not relevant for the HMM analysis since
the cavity in only in a number state, which has no definite phase due to the number-phase uncertainty
relation.
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The remaining two terms P00 and P11 correspond to events where cavity state remains

unchanged such that the pairwise sum adds to 1 (P00 + P01 = 1).

2. Qubit transitions: There are three process that can result in a qubit error: decay,

dephasing and heating.

• Qubit decay: The qubit state may decay from |e⟩ −→ |g⟩ with a probability P
↓
eg =

1− e−tm/T q
1 , where T

q
1 is the qubit decay time.

• Qubit dephasing: The qubit state may dephase though only during the parity

wait time tp = 380 ns thus, Pϕ = 1 − e−tp/T
q
2 , where T

q
2 is the qubit dephasing

time and tp ≪ T
q
2 .

• Qubit heating: Spontaneous heating |g⟩ −→ |1⟩ to the steady state qubit popula-

tion n̄q occurs with a probability P
↑
ge = n̄q(1− e−tm/T q

1 ).

The transition matrix covers all these processes in Pge = P
↑
ge+P

ϕ and Peg = P
↓
eg+P

ϕ.

As before, Pgg and Pee corresponds to events where qubit state remains unchanged

such that their pairwise sum adds to 1 (Pgg + Pge = 1).

In sections 3.6 and 3.7, we discussed the qubit and cavity characterization experiments we

can perform to measure the decay time (T
q
1 , T

c
1 ), coherence time T

ϕ
2,q, T

ϕ
2,c and the steady

state population n̄q. Using the numbers we obtained, let’s evaluate the elements of the

transition matrix

T =

|0g⟩ |1g⟩ |0e⟩ |1e⟩


0.989 0.011 0 0 |0g⟩

0.094 0.906 0 0 |01⟩

0.018 1.94× 10−4 0.011 0.971 |1g⟩

1.71× 10−3 0.0164 0.889 0.093 |1e⟩

(5.2)

The emission matrix captures the probability to observe a signal R given the qubit-cavity
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state is S. It is represented by a 2×4 matrix for two possible readout signals where [FgG , FeE ]

gives the probability of obtaining the correct readout and [FgE , FeG ] gives the probability

due to readout errors which is indistinguishable from state change errors.

E =
1

2

G E


FgG FgE |0g⟩

FeG FeE |0e⟩

FgG FgE |1g⟩

FeG FeE |1e⟩

(5.3)

Note that there is a factor of 1/2 in front of the matrix, this is due to the fact that readout

is independent of the cavity state. For example, FgG = P (G|g) = P (G|g0) + P (G|g0). And

since the readout state remains unchanged by the cavity state, P (G|g0) = P (G|g1) such that

P (G|g) = 2P (G|g0) and thus, E|g0⟩,G = 1
2FgG .

Now going back to section 3.6 and Fig. 3.6 we can estimate the elements in the emission

matrix. The resulting single shot data is fitted to a sum of Gaussian distribution to obtain

a confusion matrix described below.

|g⟩ |e⟩ 0.976 0.024 G

0.030 0.970 E
(5.4)

There are two main sources of error contributing to the readout infidelity: spurious qubit

transitions and voltage fluctuations from readout amplification chain. It is important to

decouple the two and only include the readout errors due to voltage fluctuations while

evaluating the emission matrix. To do so, we compute the readout infidelity by subtracting

the qubit error probabilities during the 1µs readout window due to the qubit decay ([1 −

e−1 µs/T q
1 ] = 8 × 10−3) or heating (n̄q[1 − e−1 µs/T q

1 ] = 8 × 10−5) from the total measured
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error during the readout. However, these values are within one sigma and we can evaluate

the elements of the emission matrix based on the confusion matrix to be FgG = 97.6± 0.1%

and FeE = 97.0± 0.1%.

E =
1

2

G E


0.976 0.022 |0g⟩

0.030 0.970 |0e⟩

0.976 0.022 |1g⟩

0.030 0.970 |1e⟩

(5.5)

It is an important task to accurately fill out the transition and emission matrices which

forms the core of HMM analysis. The qubit, cavity and readout parameters measured

independently are summarized below.

Device Parameter Value
Qubit frequency ωq = 2π × 4.961GHz
Qubit anharmonicity αq = −143.2MHz
Qubit decay time T

q
1 = 115± 10 µs

Qubit dephasing time T
q
2 = 160± 10 µs

Qubit echo time T e
2 = 220± 20 µs

Qubit residual occupation n̄q = 2± 1× 10−2

Storage frequency ωs = 2π × 5.965GHz
Storage decay time T s

1 = 1360± 23 µs
Storage dephasing time T s

2 = 2390± 286 µs
Storage-Qubit Stark shift 2χ = −2π × 1.285MHz

Storage residual occupation n̄c = 6.3± 0.3× 10−3

Readout frequency ωr = 2π × 7.790GHz
Readout |e⟩ shift 2χer = −2π × 1.53MHz
Readout fidelity (|g⟩) FgG = 97.6± 0.1%
Readout fidelity (|e⟩) FeE = 97.0± 0.1%

Table 5.1: Device parameters. Measured qubit, storage, and readout cavity parameters.
These independently measured values are necessary to determine for the transition and
emission matrices. This enables the hidden Markov model to capture the behavior of the
system during the measurement sequence.
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5.5 Reconstructing the cavity state

As mentioned earlier, HMM analysis provides us a tool to compute the cavity state proba-

bilities at the beginning of the measurement sequence. It involves tracking all the possible

paths that the joint qubit-cavity states may take such that their imperfect measurement

would result in the observed readout sequence (R0,R1, ....,RN ). The probability is mathe-

matically represented in Eq. 5.6 which uses an efficient backward algorithm as described in

Appendix D42.

P (n0) =
∑

S0∈[|n0,g⟩,|n0,e⟩]

∑
S1

...
∑
SN

ES0,R0
TS0,S1ES1,R1

...TSN−1,SNESN ,RN

(5.6)

We can understand this complicated expression as follows: (1) The inner set of N sums

of the qubit-cavity states Si account for all the various possible state changes as well as

the emissions during each observation. (2) Since the goal of reconstruction is to determine

the initial cavity state, we need an additional sum over the two possible qubit states. Let’s

consider an example where the readout changes from G to E . In this simple case, we can

count the number of possible process which could have resulted in this measured sequence as

shown in Fig. 5.4 and their associated probabilities. There are three possible scenarios (with

probability): correct detection of a photon in the cavity (P11PggFeE/2), a qubit heating

event (P00PgeFeE/2) or (c) a plain readout error (P00PggFgE/2).

Figure 5.4: State reconstruction scenarios. The cavity state reconstruction accounts for
all the possible processes that would result in the measured emission sequence. For example,
a measured sequence of G −→ E could come from three possible scenarios shown above: a
photon in the cavity, spurious qubit heating, or readout error. Image adapted from Akash
Dixit’s thesis42.
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5.6 Likelihood test

For a given sequence of observed readouts, we can use Eq. 5.6 to compute the probabilities

corresponding to zero (P (n0 = 0)) or one photons (P (n0 = 1)) in the cavity. We devise a

likelihood ratio test to determine the initial cavity state.

λ =
P (n0 = 1)

P (n0 = 0)
(5.7)

The likelihood ratio λ helps us discriminate between the two possibilities. If λ < λthresh, we

can infer the cavity has no photons in the cavity and vice-versa. For example, a likelihood

ratio of λ = 1 indicates that the cavity is equally likely to have zero or one photons. Thus,

in order to gain more confidence a large likelihood ratio is required and this sets the false

positive probability due to detector errors. We can decrease the detector based false positive

probability (δdet) by increasing the threshold for detection as

δdet =
1

λthresh + 1
(5.8)

However, there is a price to be paid in lower detection efficiency as the threshold is set high.

This cost is acceptable for two reasons: the false positives are exponentially suppressed with

more measurements and it is safer to be conservative and falsely discover the dark matter

due to spurious errors.

5.7 Testing the HMM with real events

So far I have described the internal workings of HMM, how we can reconstruct the cavity state

and set a threshold to set off a detection event. In this section, I am going to demonstrate

the effectiveness of repeated measurement protocol in exponentially suppressing false positive

events with only linear increase in the number of parity measurements.
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5.7.1 No photon in the cavity

In these experiments, we let the cavity relax for almost 5 cavity lifetimes such that it reaches

it steady state and then start recording G over 30 repeated parity measurements. The readout

sequence is shown in Fig. 5.5 where see observe no state change, indicating the absence of

a photon in the cavity. We can check that the reconstructed probabilities reflect the same

with P (n0) < 0.01 after 30 measurements.

Parity Measurement (i)
0

1

P(
R i

) P( )
P( )

0 5 10 15 20 25 30
Number of Parity Measurements (N)

10 2

100

P(
n 0

|R
0,

R N
)

P(n0 = 0)
P(n0 = 1)

Figure 5.5: Zero cavity photon. (Top) Observed readout sequence G indicating no change
in the state of qubit. (Bottom) Reconstructed probabilities of the initial cavity state as a
function of the number of parity measurements included in the HMM analysis.

5.7.2 One photon in the cavity

This is an interesting one where we do inject a photon in the cavity and record 30 repeated

parity measurements as shown in Fig. 5.6. The qubit state successfully flips between G and

E as expected indicating the presence of a photon in the cavity. I would like to highlight

two features in the reconstructed probabilities of the initial cavity state: firstly, we are able

to detect a positive event with a very high likelihood ratio even in the presence of a few

spurious detector errors (3rd and 9th measurement), demonstrating robustness. Second, the
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false positive probability (P (n0)) exponentially decreases with only linear increase in the

number of parity measurements. The probability of a series of detector errors conspiring to

produce the observed readout sequence is P (n0 = 0) < 10−20.

Parity Measurement (i)
0

1
P(

R i
) P( )

P( )

0 5 10 15 20 25 30
Number of Parity Measurements (N)
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n 0

|R
0,

R N
)

P(n0 = 0)
P(n0 = 1)

Figure 5.6: One cavity photon. (Top) Observed readout sequence G flipping back and
forth indicating the presence of a photon. (Bottom) Reconstructed probabilities of the
initial cavity state as a function of the number of parity measurements included in the HMM
analysis. The false positive probability exponentially decreases with only linear increase in
the number of measurements.

5.8 Detector Characterization

In order to implement this qubit based photon counter for sensitive applications, it is nec-

essary to characterize the detector’s performance with a calibrated coherent photon source.

We evaluate the detector performance by injecting a calibrate photon population into the

cavity and counting them using the procedure described in section 3.7 and 5.7.

For each calibrated injected mean photon population n̄inj , we perform a series of 30

repeated parity measurements and reconstruct the initial cavity state probability using the

HMM analysis. A likelihood ratio is computed for these probabilities and compared against
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a variable threshold to determine the positive events (presence of a photon in the cavity).

The measured photon probability n̄meas for each n̄inj is computed by taking a ratio of the

number of photons counted with the total number of measurements performed.

We expect the number of measured photons to grow linearly as a function of the injected

photon number and thus can write a relation described by the functional form:

n̄meas = η n̄inj + δ (5.9)

where η is the detection efficiency and δ is the detector dark count. As shown in Fig.

5.7, for any fixed threshold (λthresh = 108) we can fit the measured and injected photon

probabilities to Eq. 5.9 and extract the detector efficiency and dark counts probability.

Although it may seem that we can reduce the false positive probability to arbitrarily small
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= 50.43%
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Figure 5.7: Photon counter characterization. Starting with a cavity in its steady state, a
variable displacement is applied followed by 30 repeated parity measurements. The resulting
readout sequence is analyzed with the HMM and a likelihood ratio is applied to determine
the measured cavity population. Detector efficiency (η) and false positive probability (δ) are
determined from the fit. The dashed red line corresponds to the standard quantum limit
(SQL) which results in the noise-equivalent of one photon occupation32. We have demon-
strated detection capabilities of a single mode photon population with sub-SQL sensitivity.
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value by choosing a larger likelihood ratio, the efficiency of the detection also plummets

down (see 5.8 (a)) and start missing real photon events. Thus, it is crucial to choose a

reasonable threshold such that we operate in the regime of background dominated false

positives. One way could be to plot the efficiency corrected false positive probability as a

function of the threshold as shown in Fig. 5.8 (b). Initially δ/η decreases as the threshold

is increased, indicating a suppression of detector based false positives but eventually reaches

a steady state value of n̄s = 6.23 ± 0.30 × 10−3 even as the threshold is increased. This

tells us that the events being measured are not due to a series of detector based errors but

rather a background of real photons populating the cavity. Hence, operating the detector

with a λthresh = 108 is sufficient to suppress the detector based errors below the measured

backgrounds. It essentially means that at most 1 out of 108 events could be due to detector

based errors.
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Figure 5.8: Detector efficiency and false positive probability. (a) Detector efficiency
monotonically falls off as a function of λthresh and the tolerance for qubit based errors is
reduced. (b) Efficiency corrected false positive probability (δ/η) decreases with increasing
threshold but asymptotes at higher thresholds, indicating detector errors are no longer dom-
inant contribution to the total detector false positive probability.

We can convince ourselves that these events are real photons by plotting histogram of the
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likelihood ratio for two different n̄inj as shown in Fig. 5.9. The likelihood ratios for events

where the injected photon number is low are comparable to the events when a significant

number of photons are injected. This clearly indicates that such events are highly unlikely

due to detector errors and are correctly detected cavity photons.
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Figure 5.9: Histogram of events. Likelihood ratios of all events for two different injected
mean photon numbers is plotted. The y-axis is cut-off at 15 counts to view the rare events at
high likelihood ratio and red dashed line corresponds to λthresh = 108 used in the analysis
shown in Fig. 5.7. The total number of events which crossed the λthresh is mentioned on
the plot. For low injected photon numbers, it is clearly evident that detection events with
high likelihood ratio is from a background occupying the storage cavity rather than detector
based false positives.

5.9 Metrological Gain

By counting photons with repeated parity measurements and applying a Markov model

based analysis, we demonstrate single photon detection with background shot noise reduced

to −10 log10
√
n̄c = 11.0±0.1 dB below the SQL. In Fig. 5.10, I show the qubit based photon

counting implemented on two samples (namely Picollo and Multimode) and their associated

metrological gain as compared to trapped ions, Bose-Einstein condensates, and cold atom
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systems. With this capability to detect background events much below the SQL, we have

developed a quantum sensing which can be applied for dark matter search as we will learn

shortly.
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Figure 5.10: Metrological gain literature survey. Replace the image.

Qubit based Photon Counting

Sample or Run Frequency
(GHz)

Gain

Picollo (Run1)20 6.011 15.7± 0.9 dB

Picollo (Run2) AX ALA

Multimode (Run3) 5.956 11.0± 0.1 dB

Table 5.2: Metrological gain with qubit based photon counting with multiple samples at
different frequencies.
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5.10 Mysterious Background Photons

With photon counting technique summarized in Table 5.2, we demonstrated detection of

signal photons free of detector errors, leaving only background photons as the primary source

of detector false positives. In order to further increase the sensitivity of the photon counter,

we need to identify and mitigate the background sources.

One quick thing to check is the effective temperature of the observed background photon

population and compare it to the physical temperature of the cavity. The observed photon

population n̄s = 6.23±0.30×10−3 corresponds to a photon temperature of 56.38±0.01 mK

4, whereas the physical temperature of the base plate reads 8 mK, indicating the sample is

coupled to extraneous baths.

There are various potential sources of cavity photons that constitute the measured back-

ground. I will summarize two possibilities here - direct absorption of photons and indirect

excitation due to coupling to hot sub-systems. For detailed discussions, I would encourage

the reader to refer42,39.

1. Direction absorption of photons: The measured effective temperature of the pho-

tons in the cavity is much greater than the operating temperature of the dilution

refrigerator. This led us to believe that the radiation is somehow leaking and coupling

to the cavity mode. It could be due the poorly thermalized cryogenic components,

black-body radiation from higher temperature stages, back-propagation of amplifier

noise or insufficient attenuation on the microwave lines.

While assembling the microwave lines in the fridge, I designed the breakout clamps

such that there was no direct path for the radiation to reach the sample (light-tight)

and ensured that all the microwave components were directly screwed to a copper plate

for better thermalization. We also added a mixing chamber (MXC) radiation shield to

4. The observed background photon population is much higher than our previous work reported in20

mainly due to the addition of a direction transmission line coupled to the storage cavity and we suspect
radiation leaking via the port.
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further isolate the sample from blackbody radiation as shown in the Fig. 5.11. These

changes made noticeable difference in the qubit thermal population and the coherence

times as summarized in Fig.

Copper plate with
threaded attenuators

MXC radiation shield

Light tight assembly

Figure 5.11: Microwave lines assembly in a dilution refrigerator. Signal carrying
microwave lines with a combination of attenuators to shield the samples from room temper-
ature radiation directly reaching the MXC stage. 60-80 dB of attenuation is added on the
input line between 300K and 8mK stages to suppress any stray photons from leaking in. All
the unused holes on the MXC plates are sealed with screws to ensure light tightness. The
MXC shield prevents the blackbody radiation from higher temperature stages to impinge on
the sample.

2. Quasi-particle induced photons: The coupling between the cavity mode and trans-

mon results in hybridization of the states of the two systems. In the dispersive limit,

the dressed eigenstates of qubit |ẽ⟩ and cavity
∣∣1̃〉 can be represented in terms of the

bare eigenstates as

|ẽ⟩ = sin(θ) |g, 1⟩+ cos(θ) |e, 0⟩∣∣1̃〉 = cos(θ) |g, 1⟩ − sin(θ) |e, 0⟩
(5.10)
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where θ is the mixing angle between the two systems and is determined by their

coupling strength g and the detuning ∆. Using Eq. 5.10 and trigonometric identities,

we obtain tan 2θ = 2g
∆ and the overlap |

〈
1̃
∣∣ |e, 0⟩ |2 = sin2 θ = 7.68 × 10−3. Qubit

heating events from quasi-particle tunneling excites the qubit in its bare basis with

a probability n̄q thus, a qubit excitation could manifest as a cavity photon with the

probability n̄
q
s = n̄q×sin2 θ ≤ 7.68×10−5. This contribution is much smaller compared

to the observed residual cavity occupation, ruling out this mechanism as the possible

source.

5.11 Hidden Photon Search

Using the qubit based photon counting technique, we have demonstrated an unprecedented

sensitivity towards background photons which can be applied to conduct a narrow-band

hidden photon search. As mentioned earlier, this detector is ideally suited for a hidden

search due to the absence of a large static magnetic field. We can exclude a previously

unexplored region of the hidden photon parameter space and set sensitivity limits on the

interaction between hidden photons with normal matter. In this section, I report the results

from our publication20, however, the analysis is exactly the same for a similar search with a

different set of device parameters discussed earlier.

5.11.1 Search protocol with photon counting

In a traditional dark matter haloscope search experiment, the signal is always building up

inside the microwave cavity. However, we cannot perform a continuous search with photon

counting protocol as the process of repeatedly measuring the cavity state with a qubit Zeno

suppress further buildup of the signal in the cavity83. Thus, while the photon is counted,

the dark matter signal does not accumulate, effecting the duty cycle of the experiment.

The cavity integrates the signal over its lifetime T s
1 = 546 µs and the photon counting
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consists of N = 30 repeated parity measurements each taking tm = 10 µs, totaling 300 µs.

This corresponds to a duty cycle of
T s
1

T s
1+N∗tm = 65%. In this run, we collected 15,141 inde-

pendent sequences for a total search time of 12.81 s of which 8.33 s is the signal integration.

5.11.2 Computing the expected signal rate

The dark matter wave on resonance with the cavity mode (mDM c2 = h̄ωc) will coherently

build up the electric field and deposit photons at a rate given by

dNHP

dt
=
U/ωs
Tint

=
1

2

E2V

ωs

1

Tint
(5.11)

where U is the steady state stored energy and Tint is the integration time. In the photon

counting case, we let the integration time equals one coherence time of the cavity, Tint =

T s
1 = ωs

Qs
. The dark matter sources a space-filling current density which induces a electric

field response in the cavity oscillating at the frequency equal to the dark matter mass.

Through the Maxwell source equation we can relate the electric field and current density as

−∂E(t)
∂t

= JDM

−∂E0e
imt

∂t
= JDM

−mE(t) = JDM

E(t) = −JDM

m

(5.12)

The dark matter wave coherently builds up signal inside the cavity which linearly increases

with the integration time Tint until it reaches the coherence time of the dark matter wave

TDM
1 (corresponding to QDM = 106). However, if the cavity coherence time is greater than

TDM
1 , the storage cavity continues to accumulate the signal with a randomized phase every

dark matter coherent time. This leads to Qs
QDM

incoherent displacements within a single

cavity lifetime resulting in a random walk of cavity displacements which is
√

Qs
QDM

times
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larger than a single dark matter wave induced displacement. The random walk enhancement

motivates us to make the detection cavities with as high Q as possible.

For hidden photons, the current density JDM is set by the mixing parameter ϵ, field

amplitude A
′
and mass m

γ
′ . These are in turn related to the observed dark matter density

ρDM if we assume all the dark matter in the universe comprises of hidden photons,

J2HP = ϵ2m4
γ
′A

′2 = 2ϵ2m4
γ
′ρDM (5.13)

where the observed dark mater density ρDM = 0.4GeV/cm3 = 2π × 9.67× 1023GHz/cm3.

Another factor which sets the expected signal rate is called the geometric overlap factor

between the cavity mode and the dark matter G. It is computed according to the expression

written below,

G =
1

3

|
∫
dV Ez|2

V
∫
dV |Ez|2

(5.14)

For a simple rectangular (pill-box) or right cylindrical cavity design, we can analytically

compute the expression based on the electric field profile 5 of the desired mode42. The

geometric factor for a lowest order mode of the rectangular cavity turns out to be 26

π4
and

0.69 for a TM010 type mode in the right cylindrical cavity. The polarization of the hidden

photon dark matter u is randomly oriented every dark matter coherence time and results in

alignments with the electric field of the cavity only 1/3 of the time. Thus, the form factor

G = 1
3
26

π4
.

Considering all these contributions, we can write down the final expression for the number

of expected photon deposited in the storage cavity during the integration time T s
1 = Qs

ωs

dNHP

dt
=

1

2

(−JDM
QDM
m )2V

ωs

ωs
Qs

Qs

QDM

dNHP

dt
= ϵ2ρDMQDMGV

(5.15)

5. E = E0 sin(
πx
l ) sin(πyw )z for a rectangular cavity and E = E0 J0(

2.405
R )z for a cylindrical cavity where

J0(x) is the zero-order Bessel function.
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The photon rate for a total number of Nmeas = 15000 trials over an integration time of

T 1
s ×Nmeas = 20.4 s yields the expected number of deposited photons given by,

NHP =
dNHP

dt
× T s

1 ×Nmeas = ϵ2ρDMQDMGV
Qs

ωs
Nmeas (5.16)

5.11.3 Calculating 90% confidence limit

Expt. Parameter Θ σΘ
Quantum efficiency η = 0.409 ση = 0.055
Storage cavity frequency ωs = 6.011GHz σωs = 205Hz

Storage quality factor Qs = 2.06× 107 σQs
= 8.69× 105

Storage cavity volume V = 11.8 cm3 σV = 0.2 cm3

Storage form factor G = 0.22 σG = 0.003

Table 5.3: Photon counting experimental parameters. Systematic uncertainties of
physical parameters in the experiment must be incorporated in determining the excluded
hidden photon mixing angle ϵ. The uncertainty in the quantum efficiency is determined in
the main text from fitting the relation between the measured and injected photon population
at a detection threshold of λthresh = 105. The storage cavity frequency uncertainty is
obtained by Ramsey interferometry. The quality factor of the cavity is given by Qs = ωsT

s
1

so the uncertainty is calculated as σ2Qs
= (ωsσT s

1
)2 + (T s

1σωs)
2. The volume uncertainty is

estimated by assuming machining tolerances of 0.005 inches in each dimension. The form a
factor uncertainty is estimated from assuming 1% error in the simulated structure. Of the
experimental quantities, the efficiency has largest fractional uncertainty (13%), though the
statistical fluctuations of the observed counts still dominate (33%).

By counting single photons when the applied drive population less than the background

population (n̄c) we perform a hidden photon search. We count N = 9 background photons in

Nmeas = 15,141 measurements. We determine the hidden photon mixing angle ϵ that can be

excluded at the 90% confidence level by computing the probability that the signal could result

in less than or equal to 9 photons measured (N ≤ 9) with less than 10% probability. In each

measurement a photon is counted or not so the signal is described by a binomial distribution

with probability set by the expected number of deposited photons as calculated in Eqn.

5.16. The systematic uncertainties of the various experimentally determined quantities in

Eqn. 5.16 are treated as nuisance parameters84 with an assumed Gaussian distribution of
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mean Θ and standard deviation σΘ as shown in Table 5.3. We marginalize over the nuisance

parameters85 and compute the cumulative probability shown in Eqn. 5.17.

P (≤ N) =

∫ ∞

0

∏
i

dΘ′
i
e
−(Θi−Θ′

i)
2/2σ2Θi

√
2πσΘi

N∑
k=0

Nmeas!

k!(Nmeas − k)!

×
(
η′ϵ2ρDMQDMQ

′
sG

′V ′

ω′s

)k

×
(
1− η′ϵ2ρDMQDMQ

′
sG

′V ′

ω′s

)Nmeas−k

(5.17)

For a given hidden photon candidate, a cumulative probability of < 0.1 implies that

candidate has less than 10% chance of producing the observed signal, thereby excluding

such a candidate with 90% confidence. This leads us to exclude, with 90% confidence,

hidden photon candidates with ϵ90% > 1.68× 10−15 as seen in Fig. 5.12

5.11.4 Hidden photon parameter space exclusion

Single photon counting with repeated parity measurements is sensitive to a wide range of

candidates in the parameter space of hidden photon mass (mγ′) and kinetic mixing angle

(ϵ). To determine the sensitivity of the detector to a particular candidate, there are two

considerations: the photon number dependent shift of the qubit transition as a function of the

hidden photon mass, and the probability that a candidate would result in the measurement

of a photon with probability larger than excluded. The photon population excluded as the

90% confidence level is computed using the excluded mixing angle ϵ90% and Eqn. 5.16 as

n̄90%HP =
N90%

HP
Nmeas

= 2.42× 10−3.

The photon dependent shift of the qubit transition as a function of the frequency of an

external drive is determined in Gambetta et. al.77 to be 2χ+ωc−ωγ′ where h̄ωγ′ = mγ′c
2.

The efficiency of an individual parity measurement for a photon dependent shift that is

incommensurate with the nominal shift 2χ is given by ηparity = |12(e
iπ(2χ+ωc−ωγ′)/2χ − 1)|2

(Fig. 5.13). The effect of an inefficient parity measurement is modeled as a higher probability
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Figure 5.12: Cumulative probability of hidden photon candidate producing ob-
served signal. Regions where the cumulative probability falls below 0.1 are ruled out as
potential hidden photon candidates with 90% confidence. The minimum mixing angle that
can be excluded with 90% confidence is 1.68× 10−15.

of qubit error in the hidden Markov model. The data is then reanalyzed and the efficiency

of detection in the presence of the additional error is extracted (Fig. 5.13).

We note that for large detunings of the external drive, the shifted qubit transition fre-

quency is out of the band of the resolved-π pulses used in the photon number measurement.

The pulse shapes are Gaussian with σ = 750 ns. This constrains the maximum addressable

dark matter detuning from the cavity. A hidden photon candidate that could result in more

detector counts than background counts is only possible if the population of the odd number

states of the cavity state (Podd) induced by the hidden photon is larger than the excluded

hidden photon probability (n̄90%HP ). To calculate this Podd we again follow Gambetta et.

al.77.
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Figure 5.13: Parity measurement and detector efficiency. The efficiency of an individ-
ual parity measurement (blue) is sinusoidal in the frequency of the hidden photon induced
drive ωγ′ . The detector is a series of 30 repeated parity measurements and operates with an
efficiency shown in orange.

Podd =
1

π

∞∑
k=0

Re

 1
(2k+1)!

(−A)2k+1eA

2(2π/T
q,echo
2 + Γm) + (2k + 1)2π/T c

1

 (5.18)

where A = D
π/T c

1−iχ−i(ωc−ωγ′)

π/T c
1+iχ+i(ωc−ωγ′)

and Γm = D π
T c
1
with the distinguishability

D =
2(n−+n+)χ

2

(π/T c
1 )

2+χ2+(ωc−ωγ′)
2 . n− and n+ are related to the drive strength (ndrive) in units of

photons: n± =
ndrive(π/T

c
1 )

2

(π/T c
1 )

2+(ωc−ωγ′±χ)2
. At a given hidden photon mass, we calculate all ndrive

such that Podd ≥ n̄90%HP .

We note that for external drives with large amplitudes, the shifted qubit transition fre-

quency will be out of the band of the σ = 6ns Gaussian π/2 pulses used in the parity
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measurement. This constrains the maximum addressable dark matter induced photon occu-

pation.

By combining the detector efficiency with the ndrive such that Podd ≥ n̄90%HP , we determine

all ndrive to which the repeated parity measurements are sensitive enough to detect and

exclude (Fig. 5.14). Using Eq. 5.16 we convert the excluded ndrive to a region of excluded

hidden photon mixing angle (ϵ).

5.98

8

2

-4
6.00 6.046.02

Figure 5.14: Excluded ndrive as a function of ωγ′. The shaded region indicates ndrive

induced by the hidden photon that result in Podd ≥ n̄90%HP that are detectable and are
therefore excluded as possible candidates.

The above calculations assume an infinitely narrow dark matter line. To obtain the

excluded region of the hidden photon kinetic mixing angle, we must account for the lineshape

of the dark matter86. We convolve the dark matter lineshape, characterized by QDM ∼ 106,

with the region shown in Fig. 5.14 to obtain the excluded ϵ shown in the main text.

We note that the storage cavity contains an infinite set of discrete resonances each with

a unique coupling to the dark matter. We focus only on the lowest order mode that is
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specifically designed to couple to the qubit. In principle, the interactions between any modes

and the dark matter could result in additional sensitivity to the hidden photon. This would

require the mode of interest to have a sufficiently large geometric form factor as well as a

resolvable photon number dependent qubit shift. Future dark matter searches could employ

structures with multiple resonances to enable multiple simultaneous searches39.

5.12 Measurement optimization

Since we reported our first photon counter results, I have made significant improvements in

optimizing our measurement and calibration protocols. In this section, I am going to discuss

them in detail and describe their impact on the overall efficiency of the detector and duty

cycle.

5.12.1 Josephson Parametric Amplifier

In order to dramatically increase our single-shot readout fidelity, I developed the JPAs in

our lab under the guidance of Dr. Tanay Roy. We tried and tested a couple of different

approaches to realize JPAs which would give a reasonable amount of gain (20 dB) and a near

quantum limit efficiency. Our first approach was inspired by Tanay’s PhD work87 to build

an impedance engineered parametric amplifier which would result in amplification over a

large band-width. However, after a couple of iterations, we realized that the fabrication step

involving the deposition of parallel plate capacitor wasn’t reliable , resulting in unstable gain

profiles.

So, we decided to try a simple JPA design88 based on lumped circuit-QED elements.

I discussed the operation of a JPA in sec. 3.8.1 and how we can bias it to achieve an

optimal gain at the signal frequency. However, it is possible that one may have to tune the

parameters a little bit and bias the JPA such that the qubit readout fidelity is maximized

but at a lower gain. Following the procedure we achieved a single-shot qubit readout fidelity
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of 97% approaching the decay limit as shown in Fig. 3.6. This improved our repeated QND

measurement protocol in multiple ways:

1. Lower readout time: With a quantum-limited amplifier, we achieved a high fidelity

readout with a 1 s readout pulse length compared to 3 s in20. This resulted in a photon

counting protocol which is 25% faster.

2. Lesser number of photons: More amplification implies improved SNR which means

fewer number of photons in the readout collects the same amount of information about

the state of the qubit. With the calibration tool I developed in Fig. 4.4, we expect 4×

fewer photons in the readout and it reaches the steady state in a short period of time.

On an average 2 photons in the readout resonator are sufficient to measure the state

of qubit with 97% fidelity. This helped us reduce the wait time between two repeated

measurements from 5 s to 1 s decreasing the idle time by further 40%.

5.12.2 Optimal readout shape pulse

Although the JPA reduces the effective number of photons in the readout, it takes a long

time for the readout resonator to return to its ground state after the measurement pulse. The

residual photons in the readout continue to measure the qubit preventing further high-fidelity

operations for a period of 4− 5 time constants.

For our repeated parity measurements, we would like the resonator to immediately reset

to its ground state at the end of the measurement pulse. One experimental technique called

Cavity Level Excitation and Reset (CLEAR)78 pulse has demonstrated a cavity ring-down

almost two times faster than the natural decay. I followed the measurement procedures

described in the paper to characterize the readout parameters such as the decay constant,

absolute number of photons etc.. I compared the performance of a constant amplitude pulse

and an optimal shape readout pulse inspired by89. The idea is simple, we could extract the

maximum information out of the resonator if we could ring-up the resonator quickly (within
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a cavity lifetime) with a pulse shape which matches the spectral features of the resonator

itself and ring it down with a similar shape but with a negative amplitude. A typical pulse

shape is shown in Fig.5.15 (inset) where we concatenate the optimal pulse by sandwiching a

constant amplitude sequence between a ring-up and ring-down sequence. The amplitude of

the constant part is kept similar for a fair comparison between the two.

For a fair comparison, we keep the amplitude of the constant part same and check that

the readout fidelity is approximately the same.

Figure 5.15: Comparison of readout photon population with different pulse shapes.
[inset] A constant readout pulse (dashed), (solid) optimal readout pulse with a Gaussian rise
and fall to quickly ring-up and ring-down the resonator. The duration of these segments are
chosen to match the characteristic charging time of the oscillator. [main] Residual photon
population in the readout resonator as a function of wait time. The resultant population is
fitted to a exponential decay to estimate the initial population and compare the two pulse
shapes.

5.12.3 Linear filter/optimal integration weights

In a typical digital down-conversion process, the incoming signal time trace is integrated

with an equally-weighted distribution function. However, as shown in Fig. 5.16 we know

that the photons leaking out of a resonator do not carry much information (signal) during
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the ring-up and ring-down. In other words, we are integrating the time bins which contains

more noise compared to the signal degrading the SNR.

There are a couple of methods which can be implemented to tackle this issue. Firstly, use

a smaller integration window such that we only digitize the time trace after the resonator

reaches its steady state and before it starts to decay (say between 500− 2500ns). The draw-

back is that we are loosing useful information and may be a limiting factor for application

which require fast readout such as error-correction protocols. Secondly, we could try to learn

and optimize the integration weights such that we can maximize the separation between the

|g⟩ and |e⟩ trajectories in the I-Q space. This method utilizes the entire time trace and thus,

one build non-linear filters to shorten the readout time. We implemented a linear filter using

conventional machine learning methods to learn and optimize the integration weights such

that the resultant fidelity is maximum. It was implemented on the QM OPX hardware for

which the example scripts may be found on their Git repository.

Figure 5.16: Temporal response of the readout cavity. Incoming readout signal at the
ADC port showing the two quadrature before digitization. Cavity ring-up in the beginning,
then it reaches a steady state followed by a ring-down in the end.
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Figure 5.17: Without and with active reset. (T-L) Measured readout sequence for
a photon in the cavity alternating between G and E without the active reset. (B-L) The
reconstructed cavity state probability for 1 photon event. The dashed line is shown to
compare the false positive probability for a given number of total parity measurements. (T-
R) Measured readout sequence with active reset where we measure the qubit mostly in E
indicating a presence of the photon in the cavity. (B-R) shows the reconstructed cavity
state probability which keeps going down exponentially. Y-axis limits are set to compare
the likelihood ratio in both the cases. Need fewer number of parity measurements to reach
a desired a false positive probability.

5.12.4 Active reset of the qubit

Another advantage of a high fidelity qubit readout is the ability to perform active reset.

This speeds up all transmon measurements by a factor of 100×. Usually, we wait for at least

5T
q
1 ∼ 500 µs in between two instances to initialize the qubit in the correct state. However,

with active reset we can conditionally flip the qubit to a desired state and immediately start

the next measurement.

We observe it’s biggest impact in the photon counting technique where we reset the qubit

from |e⟩ to |g⟩ in-between two repeated parity measurements as shown in Fig. 5.17. The

qubit in |e⟩ state has a higher probability to decay and change state (1−e−tm/T q
1 ) compared

to a heating events changing the qubit state from |g⟩to |e⟩ (n̄q[1 − e−tm/T q
1 ]) resulting in

fewer detector errors. It implies we need fewer repeated parity measurements to reach the

same likelihood ratio, improving the duty cycle of the experiment even further. This does

add one additional calibration step and an error probability term in the transition matrix

associated with the reset efficiency.
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5.13 Summary

In this work, we demonstrated a novel photon counting technique using superconducting

qubits with background errors 15.7dB below the SQL. With the measured background, we

set a new exclusion limit in the hidden plot frequency point with an unprecedented sensitivity.

In addition to this work, I was able to bring down the repeated parity measurement time

from 10 µs to 2.5 µs with optimized readout hardware and protocols. This factor of 4 speed

up is pretty significant for a full-fledged axion search as the cavity coherence times are much

shorter and allows us to make enough repeated parity measurements to suppress the detector

based false positive probability beyond the SQL.
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Chapter 6

Enhancement of weak signal with stimulated

emission

In the previous chapter, we discussed how a qubit coupled to a cavity acts as a single

photon counter with sensitivity far beyond the reach of conventional detector technologies

using quantum limited amplifiers. This chapter focuses on another aspect of the dispersive

coupling which allows us to prepare non-classical states in the cavity. I will discuss the

physics behind the stimulated emission technique and how we can boost the signal rate to

make the dark matter (DM) searches go faster. I will demonstrate how we can initialize the

cavity in a Fock state utilizing the non-linearity inherited from the transmon. In the later

half, I will present the results demonstrating the enhancement as we go to higher Fock states.

Lastly, I will discuss how we conduct a hidden photon search with the measured background

events.

6.1 Signal Enhancement with Stimulated Emission

In a conventional dark matter experiment (axion or hidden photon), the signal arises from

the spontaneous emission of photons into initially unpopulated (vacuum) cavity mode from

the background dark matter wave. As we go to higher frequency searches, the volume of the

detector shrinks (V ∝ λ3) causing the signal rate to drop too low to achieve a desired SNR

in a reasonable amount of integration time. One way to boost the signal rate is to prepare

the cavity field with large amplitude sine wave which allows the cavity to receive power more

easily as given by

Ps =

∫
dV JDM (x) · E(x) (6.1)

It is analogous to pushing a child on the swing. If the swing is already in motion then it is
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easier to transfer/extract power compared to when it’s at rest. One needs to provide the push

at the correct time (or phase) to transfer energy and keep the swing in motion. However, the

dark matter wave arrives at the cavity with an unknown phase which makes it impossible to

always match the phase of the cavity field for optimal power transfer. If the correct phase

is serendipitously chosen, then the signal rate can be enhanced by a large amount. If the

incorrect phase is chosen, then the direction of power flow reverses and the dark matter

wave extracts power from the cavity field. It should be noted that even if a correct phase is

chosen, one has to deal with the increased Poisson noise from the Glauber coherent state of

the cavity wave. This shot noise is a manifestation of the zero-point fluctuation (ZPF) noise

of the vacuum limiting our resolution to single photon (SQL) when attempting to detect an

increase of the coherent state amplitude (haziness around the blob) as shown in Fig. 6.1.

Instead, we can prepare the cavity in a Fock state with large, but definite occupation

number NFock to enhance the signal rate. The Fock state has no definite phase associated

with it (see Fig. 6.1), which makes it equally sensitive to any instantaneous phase of the

incoming DM wave. Being a state of definite photon number, the Poisson noise also vanishes.

We can model the action of the DM wave on a Fock state as a classical drive which shifts this

phase-symmetric state away from the origin in the Wigner phase space. The resultant state

comprises both in-phase components which extracted excess power from the DM wave and

also out-of-phase components which delivered their power to the DM wave. The stimulated

emission process for DM converting into photons is enhanced by a factor of NFock +1 while

the stimulated absorption process is enhanced by a factor of NFock. From now on-wards,

I will discuss the rest of the chapter for an axion like dark matter particle, however, the

formalism is equivalent for hidden photons as well.
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Figure 6.1: Phase-space representation of the cavity state before and after the
dark matter wave push. (Left plots) Displacing the cavity initialized in |0⟩ in an arbitrary
direction by a small coherent push βcoh ≪ 1 results in a small probability P0,1 ∝ |M0,1|2
for creating a |1⟩ component by spontaneous emission of a photon from the DM wave. The
direction of displacement is determined by the instantaneous phase of the DM wave which
is randomized every DM coherence time, but since the initial cavity state is azimuthally
symmetric, a displacement in any direction gives the same probability P01. The red dashed
line is shows as a guide to locate the origin w.r.t to the center of the blob. (Right plots)
The cavity is initialized in a |n⟩ = 10 Fock state which also has an azimuthally symmetric
Wigner distribution. Displacing this distribution in an arbitrary direction shifts some part
of the distribution to larger radius and other parts to smaller radius. For example, the lower
plots shows a displacement of βcoh = 0.1 in the positive X = Re(β) direction. The shift to
larger radius corresponds to stimulated emission to states with larger photon number, for
example |11⟩ while the shift to smaller radius corresponds to stimulated absorption to states
with smaller photon number , for example |9⟩. As shown in the histograms, the stimulated
enhancement factors (NFock+1) andNFock give probabilities which satisfy P10,11 = 11×P0,1
and P10,9 = 10× P0,1.

6.1.1 Treating dark matter wave as a classical drive

From the dark matter density we can infer that the dark matter wave has classical occu-

pation number 1 and thus, can be considered as a classical wave θ = θ0 exp(mDM t + ϕ0)

which drives the cavity mode, similar to what we discussed earlier in section 3.7. ϕ0 is the

1. The number of dark matter particles contained in a volume of 1 cm3 is roughly given by ρDMV
mDM

∼
2π×9.67×1013GHz

6GHz ∼ 1014
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instantaneous phase of the axion wave and it drifts in value by one radian over the coherence

time QDM/mDM . On time scales shorter than the coherence time, the axion wave can be

described as a coherent state and the interaction Hamiltonian integrated over the cavity

volume V is given by

Hint = g(B⃗0 · E⃗)θ V = gθ(t)B0

√
V ma(âb̂

† + â†b̂) (6.2)

where â and b̂ corresponds to the annihilation operator for cavity and axion field respectively.

The action of the axion wave can be modeled as a displacement operator D̂(β) ≡ e β
∗â−βâ†

acting on the cavity state, traditionally prepared in the vacuum state |N⟩ = 0. Generally,

we look for an spontaneous emission from the axion wave into the cavity mode and strive to

measure the operator

| ⟨N + 1| D̂(β) |N⟩ |2 (6.3)

for β ≪ 1. However, if the cavity is initialized in a large N Fock state, then there will be a

large enhancement of this process. In other words, the probability of finding the cavity in

N + 1 Fock state is significantly higher. Using the physics learnt in our quantum mechanics

course and a few manipulations, we can prove a few relations to mathematically prove this

D̂†(β) â D̂(β) = â+ β

D̂(β) |0⟩ = e |β|
2/2e β

∗âe βâ
†
≈ (1 + βâ†) |0⟩

⟨N + 1| D̂(β) |N⟩ ≈ β
√
N + 1

(6.4)

For a coherence time-limited amplitude transfer and setting β = βcoh, the occupation prob-

ability of the cavity in |N + 1⟩ Fock state grows as

| ⟨N + 1| D̂(βcoh) |N⟩ |2 = |βcoh|2 (N + 1) (6.5)
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Eq. 6.5 tells us that the rate of observing |N + 1⟩ is enhanced by a factor of N + 1 relative

to the usual spontaneous emission scenario in which the cavity is prepared in the vacuum

state with |N⟩ = 0. For example, in the single photon counting technique described earlier,

the signal would be occasional observance of |1⟩ in the final state and the relative measured

probabilities of |1⟩ and |0⟩ would determine the coupling g. Compared to that, cavity

initialized in N > 0 provides information on g, but with an enhanced signal rate of observing

the final state in |N + 1⟩ as depicted in Fig. 6.1.

Now, if only we had a photon counting detector which could distinguish between |N + 1⟩

and |N⟩ Fock states, we would benefit from this technique. But wait, we did discuss such

a protocol in Fig. 3.2 where a transmon dispersively coupled to a cavity when probed with

a narrow bandwidth pulse resolves the individual Fock states in the cavity. With a number

resolved detector and stimulated emission technique, we could drastically enhance the signal

rate to a level detectable above the minimum signal shot-noise limited rate and in particular

enable search at frequencies above 10GHz. So, how do we prepare non-classical states in the

cavity?

6.2 Preparing Non-classical States in the Cavity

In section 3.7, I discussed how the transmon provides an unique tool set to prepare any

quantum state in the cavity. For this experiment, I used a 3D Multimode cavity39 as shown

in Fig. 6.2 (a). It consists of a long cavity volume which supports multiple modes in the

cavity dispersively coupled to the same transmon qubit. The state of the qubit is readout

using a 3D readout cavity. I used the methods previously discussed to prepare Fock states

in the cavity namely, SNAP gates and GRAPE generated optimal control pulses. Both

the methods utilize the non-linearity imparted by the qubit to perform conditional gates or,

state transfer to evolve the qubit-cavity system from |g, 0⟩ −→ |g, n⟩. As discussed earlier, the

SNAP method suffers from two issues limiting the maximum achievable fidelity. First, the

number of constructed sequences scales as (2n+1), requiring large number of gates, limiting
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operations which are feasible in the presence of decoherence. Second, the constructed model

fails to account for the higher order Kerr non-linearity (HKerr/h̄ = K(a†)2(a)2) in the

Hamiltonian, which is non-negligible at higher photon occupation.

For this particular experiment, I pursued the GRAPE method to generate OCT pulses

which achieve maximum fidelity. In Fig. 6.2, I demonstrate the creation of Fock states in

the cavity up to |n⟩ = 4. In principle, we could prepare even higher Fock states, however,

at some point due to the enhanced decay of the photon in the Fock states, the photon losses

will be comparable to the qubit decay and the two error sources become indistinguishable.

The enhancement of decay rate90,91 is the consequence of spontaneous enhancement of the

emission due to the same enhancement factor which enhances the signal and we can quickly

check that by applying annihilation operator on the number state 2

â |n⟩ =
√
n |n− 1⟩ (6.6)

where, the probability of photon loss in the Fock state is enhanced by a factor n.

Estimating the state preparation fidelity

We need a metric to experimentally test the performance of these OCT pulse, such that we

can iterate over a small set of parameter space to optimize the performance even further.

The fastest and most convenient metric to quantify the fidelity is the qubit spectroscopy

with a number selective π-pulse. As I mentioned earlier, Fock states have no definite phase

associated with them. Thus, a qubit spectroscopy reveals all the information about the

probability distribution of the cavity state. Once we have a set of pulses that satisfies the

fidelity criterion, we perform Wigner tomography of the cavity state and demonstrate the

key signature of Fock states - concentric rings in the phase space as shown in Fig. 6.2 (b).

2. This is just an intuitive reasoning and not a complete analytic derivation. One must solve the master
equation in the presence of dissipation to obtain the complete expression. I would like to clarify that the
lifetime of the cavity in a particular Fock state changes but the photon lifetime in the cavity is unaltered.
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Figure 6.2: Creation of Fock states in the cavity using GRAPE method. (a) A
schematic of the multimode flute cavity showing the location of the storage cavity (red), read-
out cavity (green), and transmon chip with a SEM image of the Josephson junction (blue)39.
(b) Characterization of the cavity state using qubit spectroscopy (left) and Wigner tomogra-
phy (right). Qubit spectroscopy is performed immediately after the OCT pulses, single peak
in each probability distribution confirms the creation of correct |n⟩ Fock state. Resultant
probability distribution is fitted to a Gaussian to determine the state preparation fidelity.
Grey dashed lines correspond to shift in frequency without the correction term. However,
the deviation of peak position at higher photon numbers implies the higher order correction
is non-negligible. (Right) Wigner tomography is performed by coherently displacing the re-
sultant cavity state in the 2D phase space to map the average parity and thus, reconstruct
the cavity state density matrix using Eq. 3.15.
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Figure 6.3: Decay rate of Fock states. Measured lifetime of the different Fock states
prepared in the cavity using OCT pulses. The decay rate is inversely proportional to the
lifetime (Γ = 1/T1). The curve shows enhancement in the decay rate as a function of the
Fock state |n⟩. The linear fit to the data fits well as predicted by90, where Tn

1 = T1/n.

This verifies our claim that the OCT pulses indeed create the intended Fock states.

While estimating the fidelity, we must account for the error in signal due to qubit decay

and readout. One way would be to offset the fitted peak values with the peak value obtained

for |n⟩ = 0 case. In the case of Wigner tomography, we would modify the parity sequence

by flipping the qubit to |e⟩ state before the parity sequence to nullify the error due to qubit

heating and decay and collect two measurements to analyze the averaged data.

6.3 Stimulated emission protocol

The stimulated emission protocol is divided into two parts: first part involves the preparation

of cavity in a desired Fock state, |n⟩ and the second part involves the detection of cavity

in the |n+ 1⟩ Fock state. In addition to the Fock state preparation in the first half, we

also actively minimize the false positive events, cavity accidentally starting in |n+ 1⟩ state.

We do so by conditionally flipping the qubit state three times with π-pulses centered at the

(n + 1)-shifted peak. If and only if the measurement outcome is a set of [G, G, G] do we

proceed ahead with the rest of the protocol. By doing this, we can suppress the false positive
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rate below 3%.

At the end of the first part, in a separate experiment we measure the efficiency of the state

preparation by measuring the qubit excitation probability with a number resolved π-pulse

centered at the |n⟩ peak. The measured fidelities are P0 = 95.2±0.3%, P1 = 91.2±0.4%, P2 =

87.3 ± 0.5%, P3 = 81.6 ± 0.6%, P4 = 63.6 ± 0.7%. For comparison, a coherent state with

mean photon number n̄ = 3 and post-selection would only result in P3 = 22.4%. Hence,

OCT pulses is an optimal way to prepare Fock state and keep the false positives low.

After the state preparation, we apply a coherent drive to the cavity mimicking a dark

matter push to characterize the detector. A series of repeated QND measurements are

recorded by performing conditional π-pulses centered at the (n + 1)-shifted peak. We then

apply the hidden Markov model (HMM) analysis to reconstruct the cavity state probability

immediately after applying the coherent drive. The schematic of the experimental protocol

is depicted in Fig. 6.4. After a few trial and error, I decided upon the current protocol which

is predominantly focused on keeping the false positive errors low.
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Figure 6.4: Stimulated emission protocol. Schematic of the experimental sequence di-
vided into two. The first part involves the Fock state preparation and false positive reduction
with conditional π-pulses. Iff the outcome is positive, the experiment proceeds to the next
step, where a coherent displacement on the cavity state mimics a dark matter push. This
is followed by a series of 30 repeated measurements with conditional π-pulses centered at
(n+1) peak to detect the change in cavity state from |n⟩ −→ |n+ 1⟩.
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Minimizing the false positive probability

One of the most challenging task in designing this experiment is to suppress the false positive

probability while keeping the original Fock state intact. In the photon counting experiment, it

meant accidentally measuring the cavity in |1⟩ state due to spurious errors. In the stimulated

emission case, it would mean the cavity initialized in |n+ 1⟩ Fock state instead of |n⟩. In

order to successfully implement this experiment we desire - high state preparation fidelity

with very low false positive probability. Using OCT pulses helps us achieve reasonable Fock

state preparation fidelity 3, allowing us to develop the other parts of the experiment. Also,

we learnt in the previous chapter that detector based errors can be exponentially suppressed

by performing repeated QND measurements of the cavity state. Unfortunately, with a single

resolved π-pulse centered at nth Fock state, we can only extract one bit of information,

either the cavity is in |n⟩ Fock state or not. Thus, we have a choice to make to make at

this point - (1) either perform repeated measurement at |n⟩ to gain more confidence that

the cavity initialized in the correct state or, (2) repeatedly probe the |n+ 1⟩ to suppress any

false positive events with a high likelihood ratio.

In the early stage, I focused on probing the target state |n⟩ in the cavity to ensure that

the cavity was in the correct state before we proceeded with the rest of the protocol. I

performed 10 repeated QND measurements with π-pulses centered at |n⟩ peak and HMM

analysis to reconstruct the cavity state probabilities at the end of the first part. The events

qualified for detection were post-selected based on the likelihood ratio. This approach didn’t

work as expected because of the following reasons -

• 10 repeated measurements incurred long wait time for the higher Fock state prone to

enhanced decay rates

• Over counting the qualified events where the cavity may not be in the correct Fock

state at the end but HMM cannot distinguish it as it takes into account all the previous

3. I will discuss the possible cause of lower fidelity for |4⟩in a later section.
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measurements to assign a likelihood ratio

One year later, we realized it may not be the best approach and decided to follow the

second approach where we perform a few conditional checks in real time to ensure that the

cavity state didn’t jump to |n+ 1⟩ and proceed only if the checks are true. During this time,

I tested and added new hardware capabilities to perform real time computation needed for

such conditional checks. This allowed me to pursue the final stimulated emission protocol

and test any other conditional checks if and when required. For example, if we do 4 checks

instead of 3 then, we can reduce the false positive probability below 0.1%.

6.3.1 HMM for stimulated emission

We started with the HMM analysis developed for photon counting experiment and modified

it to accommodate higher excited states of the cavity. However, given the nature of the

readout measurement, we can only answer if the cavity is in a particular Fock state |n⟩

or not
∣∣n′〉 and hence, restrict the cavity state to only change from |n⟩ to either |n− 1⟩or

|n+ 1⟩. This assumption is reasonable as the probability to change the photon number by

greater than ±1 is negligible.

The transition matrix which captures the possible changes in qubit and cavity state is

different from the photon counting case. Although, the qubit transition probabilities stays

the same, the cavity state may change from |n⟩ →
∣∣n′〉 via either decay (|n⟩ → |n− 1⟩) or

excitation (|n⟩ → |n+ 1⟩) with probabilities Pn, n−1 = 1 − e−tm/Tn
1 or Pn, n+1 = n̄c[1 −

e−tm/Tn
1 ] respectively. I measured the effect of cavity occupation on the qubit coherence

propertied and did not see any noticeable change. The lifetime of the cavity is modified due

to the enhanced decay of a Fock state (Tn
1 = T s

1 /n) as compared to the bare lifetime of a

coherent state and we account for that in the transition probabilities. In most cases, we

assume the interaction between the qubit and cavity to be QND, i.e., the measurement of

cavity state by qubit does not perturb the state. However, we have measured the QNDness

of this measurement itself (see Fig. 3.20). The measured demolition probability pD for |1⟩
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is 2.6% per measurement. This acts like an additional source of loss to the cavity mode but

only when the resolved π-pulse is on resonance with the shifted qubit frequency. Hence, we

add this term in the transition matrix. We measured the demolition probability associated

with each Fock state as tabulated in Tab. 3.1. To be consistent with the formalism developed

for photon counting analysis, the qubit will flip only when π-pulsed at the n-peak and the

cavity is in |n⟩.

T =

∣∣n′g〉 ∣∣n′e〉 |ng⟩ |ne⟩


Pn′n′Pgg Pn′n′Pge Pn′nPge Pn′nPgg

∣∣n′g〉
Pn′n′Peg Pn′n′Pee Pn′nPeg Pn′nPee

∣∣n′e〉
Pnn′Pgg Pnn′Pge PnnPge PnnPgg |ng⟩

Pnn′Peg Pnn′Pee PnnPee PnnPeg |ne⟩

(6.7)

6.3.2 Examples of the HMM in action

We can check the effectiveness of the modified HMM analysis by looking at two example

measurement sequences which cross the initial conditional checks after initializing the cavity

in |n⟩ = 1 Fock state and detecting the cavity state in |n⟩ = 2 after the coherent displacement

with repeated π-pulses.

No stimulated emission

An example readout sequence is shown in Fig. 6.5, in the case where we do not apply

a coherent displacement drive to the cavity state prepared in |n⟩ = 1 Fock state. HMM

analysis on the observed readout sequence gives reconstructed cavity state probability to be

in |n⟩ = 2 close to zero.
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Figure 6.5: No stimulated emission. (Top) Observed readout sequence of repeated qubit
measurements with number resolved π-pulses centered at (n+1) peak. (Bottom) Recon-
structed cavity state probability to observe the cavity change its state from |1⟩ −→ |2⟩.
Clearly, the probability to find the cavity in |2⟩ is low as expected from the readout se-
quence.

Stimulated emission

On the other hand, when we do apply a coherent displacement on the cavity state prepared

in |n⟩ = 1 Fock state the observed readout sequence flips back and forth between G and E

indicating the cavity in |n⟩ = 2 Fock state. Reconstructed cavity state probability confirms

the stimulated emission with a very high likelihood ratio.

6.3.3 Signature of enhancement with Fock states

In order to characterize the detector after preparing the cavity in a certain Fock state |n⟩,

we apply a variable displacement (α ≪ 1) drive to the cavity and map out the relationship

between the injected (ninj = |α|2) and measured photons, performing 30 repeated qubit

measurement and applying λthresh = 103 to discriminate between positive and negative

events. This value is informed from the residual cavity occupation ncth = 6× 10−3 measured
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Figure 6.6: Stimulated emission. (Top) Observed readout sequence of repeated qubit
measurements with number resolved π-pulses centered at (n+1) peak. Successful qubit
flip-flop implies the cavity did change its state to go higher Fock state. (Bottom) From
reconstructed cavity state probability we can check that the cavity did change its state
from |1⟩ −→ |2⟩ with a very high likelihood ratio. The false positive error probability falls
off exponentially with the number of measurements included in the analysis and is robust
against the presence of a few spurious readout errors.

following the photon counting method described in20(see Fig. 5.8). Detector errors below

this value are sub-dominant. For a cavity initialized in |n⟩, the probability of finding the

cavity in a Fock state |l⟩ for a complex displacement α is given by the analytical expression92:

Pnl(|α|2) =
∣∣ ⟨l| D̂(α) |n⟩

∣∣2 = (n!/l!)α2(l−n)e−|α|2 × Ll−n
n (|α|2) where Ll−n

n is an associated

Laguerre polynomial. The resultant data is fit to equation below,

nmeas = η Pnl(|α|2 = ninj) + δ (6.8)

where η is the detection efficiency and δ is false positive probability.

Fig. 6.7 shows the distinct feature of stimulated emission enhancement as we expected,

higher number of measured photons for the cavity initialized in higher Fock state. This

clearly demonstrates the success of stimulated emission as an enhancement technique for
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Figure 6.7: Signature of enhancement. After initializing the cavity in a Fock state |n⟩,
a variable cavity displacement (mock dark matter push), 30 repeated qubit measurements
of cavity photon state are performed and a threshold λthresh is applied to determine the
cavity population at |n+ 1⟩ Fock state. Background events with α = 0 are subtracted to
compare between different Fock states. λthresh = 103 is chosen based on the observed cavity
occupation of (ncth = 6 × 10−3) such that the detector based errors are still sub-dominant.
Detector efficiency for each Fock state is determined from the fit and reported in the legend.
The monotonic decrease in the efficiency is attributed to - higher decay probability to reach
the same false positive probability and demolition probability of the cavity state due to
repeated measurements (pd increase from 0.026 to 0.044). Anomalous behavior in |3⟩ is
attributed to the state decaying to nearby modes which are close in the energy level |q, s, r⟩.

weak signals. The detection efficiencies from the fits are mentioned in the plot and the false

positive probabilities δ are smaller than 10−4 for all Fock states, comparable to the measured

residual photon occupation in the cavity. In order to keep the detector based errors the same,

we take a toll on the efficiency. To explain this, consider |n⟩ = 5 Fock state which is 1.6 times

more likely to decay during the repeated measurements protocol to reach the same likelihood

as |n⟩ = 1. In addition, the higher demolition probability also contributes to the observed

difference in efficiency (0.8/0.4 = 2). One way to combat is to work with a system with

higher Q and lower demolition probability. Weakly coupled qubits in conjunction with ECD

technique (Echoed Conditional Displacement)93 could be an attractive solution to prepare
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Fock states as well as maintain low demolition probability. A detector with fewer errors

caused by thermal population and readout fidelity etc. would certainly help.

Unfortunately, we observe anomalous behavior with |n⟩ = 3 data, where the measured

counts are lower than expected. We suspect it is due to leakage/cross-talk with a nearby mode

which is closer in the energy level. The multiple modes of the cavity and qubit constitute a

large number of modes |q, c⟩ in the energy diagram, which causes mode crowding. There is

no direct way to investigate the cause but we have identified a couple of transitions which

could be facilitated by the always-on interaction of the qubit with all the cavity modes. For

example, |g, 3⟩ in Mode#2 is only 10 MHz away from |e, 2⟩ in mode#4, and the difference

could have been provided by an on-resonance readout tone. This issue can be easily resolved

with a single mode cavity in a future experiment.

In the data plotted above, we did a background calibration by subtracting the total

number of counts with the counts observed at α = 0 for each Fock state. And I will discuss

in the next section how it is justified.

6.4 Hidden photon search

In order to conduct a hidden photon search with the measured counts, I performed a back-

ground study varying the dwell time, where the cavity is allowed to integrate the DM signal

without applying an external cavity displacement drive. For a coherent signal, we expect

the number of counts to increase linearly with dwell time as well as the Fock enhancement

factor. The hidden photon signal rate can be written as

dNHP

dt
= a0 (n+ 1) τ (6.9)

NHP = a0 (n+ 1) τ (Ntrials τ) (6.10)

where the coupling term a0 = mHP ϵ
2 ρDM GV captures the kinetic mixing term and

Ntrials τ is the total integration time. However, in the actual experimental conditions,
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the measured counts may contain a incoherent term in addition to the Eq. 6.10 such that

the measured counts are modified but it won’t have the Fock enhancement factor, and yet

another term which has counts dependent on the specific state preparation

Nmeas = a0 (n+ 1) τ (Ntrials τ) + b (Ntrials τ) + cnNtrials (6.11)

where a0 and b and cn’s are the fit parameters we extract from fitting the measured counts.

By performing an ordinary least square (OLS) fit to the measured counts, we extract the

fit parameters with their uncertainties tabulated in Table 6.1. The values of fit parameters

obtained from performing a Maximum Likelihood Estimate (MLE) were comparable. The

large statistical uncertainties on a are probably due to the fact that other two terms dominate

the measured counts and fluctuations causing a to swing up and down by a large amount.

Fitted Parameter Θ σΘ
a0 1.858× 103s−2 7.662× 105s−2

b −7.26 s−1 4.2× 101 s−1

c0 3.402× 10−4 4.292× 10−4

c1 1.419× 10−3 4.0× 10−4

c2 5.860× 10−4 4.222× 10−4

c4 7.330× 10−3 6.732× 10−4

Table 6.1: Fitted parameters. Statistical uncertainties of the fitted parameters corre-
sponding to each source of background counts. The Fock state with higher background
counts have larger c value indicating that the source of counts is related to the state prepa-
ration step and thus, it is valid to perform a background subtraction to demonstrate the
enhancement technique.

In order to understand the systematic effects, I obtained a distribution of the afit by

fitting the data to simulated data sets generated by sampling b and cn’s independently

assuming a normal distribution and keeping a0 fixed to a value equal to σa. Please note that

we are possibly over-estimating the error bars on a0 as the error-ellipses for b and c’s may be

oblique, broadening the distribution while sampling. The procedure was repeated 100, 000

times to keep the error probability much below 1%. The resultant distribution is symmetric
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Figure 6.8: Examples of fit to background counts. The total number of counts for all
trials after preparing the cavity in different Fock states for varied dwell time. The number
of counts are then fit to a functional form given in Eq. 6.11 to extract the fit parameters.
The dashed line corresponds to different fit values of a0 to demonstrate that fits work well.
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Figure 6.9: Systematic effects on a0. Observed distribution of afit with simulated data
generated from Gaussian sampling the remaining fit parameters. The simulated data was
generated 100, 000 times to keep the error probability below 1% .The red line represents a
normal distribution fit to the histogram.

about the chosen value of a0 as shown in Fig. 6.9. It implies that the distribution of the

measured value a0 is also symmetric and we can use the standard deviation to compute the

90% confidence level limit on kinetic mixing angle.
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This is a first demonstration of an unique technique which allows us to perform back-

ground subtraction without any cavity tuning. In general, a background subtraction is

performed in dark matter experiments by tuning the cavity mode frequency and comparing

the power levels. However, this option may not be available always and we demonstrate an

alternate approach to distinguish between different sources of noise.

6.4.1 Kinetic mixing angle exclusion

For a dark matter candidate on resonance with the cavity frequency (mDMc
2 = h̄ωc), the

rate of photons deposited in the cavity prepared in a Fock state |n⟩ by the coherent build

up of electric field in time τ is given by31:

dNHP

dt
=
U/ωs
τ

=
1

2

E2 V

ωs

1

τ
=

1

2
J2DM (n+ 1) τ2

GV

ωs

1

τ
(6.12)

The stimulated emission factor appears via the enhancement of magnitude of the electric field

generated inside the cavity. The volume of the cavity is 34.5× 0.5× 2.5 cm3 = 43.13 cm3. G

encompasses the total geometric factor of the particular cavity used in the experiment. This

includes a factor of 1/3 due to the dark matter field polarization being randomly oriented

every coherence time. For the lowest order mode of the rectangular cavity coupled to the

qubit with E = sin(πxl ) sin(
πy
w )z the geometric form factor is given by:

G =
1

3

∣∣∫ dV Ez
∣∣2

V
∫
dV |Ez|2

=
1

3

26

π4
(6.13)

The hidden photon generated current is set by the density of dark matter in the galaxy

ρDM = 0.4GeV/cm3 = 2π × 9.67× 1019GHz/cm3:

J2DM = 2ϵ2m4A′2 = 2ϵ2m2ρDM (6.14)

Substituting Eqn. 6.14 into Eqn. 6.12 yields the signal rate of photons deposited in the

cavity by a hidden photon dark matter candidate:
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dNHP

dt
= (n+ 1) ϵ2ρDMmDMGV τ (6.15)

We can now compute the kinetic mixing angle from the measured value of a0 as given by

Eq. 6.10. In order to determine the 90% confidence limit on the mixing angle ϵ, we rewrite

ϵ2 =
a0

mHP GV ρDM
(6.16)

Using standard error propagation formula, we determine the standard deviation on ϵ given,

we have the error estimates for all the parameters tabulated above. The estimated value of

ϵ0 = 1.3 × 10−15 ± 3.30 × 10−13, dominated by the error on a0. We can now set the 90%

confidence limit on the kinetic mixing angle term as ϵ90% = ϵ0 + 1.28σϵ = 4.279 × 10−14.

This leads us to exclude, with 90% confidence, hidden photon with mixing angle ϵ90% greater

than 4.279× 10−14 as shown in Fig. 6.10.

Expt. Parameter Θ σΘ
Storage cavity frequency ωs = 5.965GHz σωs = 26Hz

Storage quality factor Qs = 5.11× 107 σQs
= 1.4× 105

Storage cavity volume V = 43.13 cm3 σV = 1.2 cm3

Storage form factor G = 0.002 σG = 0.0002

Table 6.2: Stimulated emission experimental parameters. Systematic uncertainties
of physical parameters in the experiment must be incorporated in determining the excluded
hidden photon mixing angle ϵ. The uncertainty in the hidden photon (HP) conversion is
determined in the previous section. The storage cavity frequency uncertainty is obtained
by Ramsey interferometry. The quality factor of the cavity is given by Qs = ωsT

s
1 so

the uncertainty is calculated as σ2Qs
= (ωsσT s

1
)2 + (T s

1σωs)
2. The volume uncertainty is

estimated by assuming machining tolerances of 0.005 inches in each dimension. The form a
factor uncertainty is estimated from assuming 1% error in the simulated structure. Of the
experimental quantities, the HP conversion has the largest systematic uncertainty.
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Figure 6.10: Excluded ϵ with mγ′. Shaded regions in the hidden photon parameter space
of coupling (ϵ) and mass (mγ) are excluded with 90% confidence. The horizontal extent is
set by the bandwidth of the number resolved qubit π-pulse which is insensitive to any drive
outside the band. The vertical limit is set by the maximum ϵ which would result in hidden
photon rate greater than the value which would degrade the fidelity of Fock state preparation
significantly. The region between the blue and red curve represents the exclusion with the
stimulated emission experiment whereas, the excluded region above the red curve is mainly
due to the failure of Fock state preparation which is easily detectable in the experiment.

Maximum allowed kinetic mixing

A hidden photon candidate that could result in more detector counts than background

counts is constrained by the cavity occupation number which degrades the fidelity of Fock

state preparation in the cavity by a significant amount. In order to estimate the same, the

cavity is prepared with varied number of mean photons before applying the the OCT pulse.

The resultant state is measured with the same procedure as the stimulated emission protocol

to compute the fidelity. We observe that the fidelity changes significantly when the mean

injected photon number goes above ninj ≥ 0.05 shown by the red dashed line in Fig. 6.11.

The maximum number of photons sourced from the hidden photon which is tolerable before

the state preparation is out of control and allows us to perform the stimulated emission

experiment. In principle, we can exclude the region all above the red curve due to the failure

126



of Fock state preparation which is easily detectable in the experiment. In practice, the region

above red dashed line is excluded up to ϵ → ∞, however, for representational purposes, we

plot only up to ϵ = 1.

0.0 0.2 0.4 0.6
ninj = | 2|
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Figure 6.11: Fock state preparation with non-zero occupation in the cavity. Mea-
suring the Fock state preparation probability as a function of initializing the cavity with
varying occupation before the OCT pulses. Red dashed line corresponds to the maximum
tolerable injected number of photons where the fidelity changes significantly.

The sensitivity can be further improved with a cylindrical cavity such that the form-

factor is much larger than the current cavity. Lower cavity occupation would definitely help

in keeping the background counts low.

6.5 Summary

In summary, we have demonstrated a signal enhancement technique using circuit-QED tools

to prepare the cavity in Fock states and to enhance the rate of stimulated photons. It results

in a 2.5 × (4 dB) improvement in the signal rate, taking into account the efficiency. We

present a first demonstration of an unique method to distinguish between different sources

of backgrounds by estimating their individual contributions. The measured contribution due
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to a coherent source is converted into hidden photon kinetic mixing angle to set an exclusion

limit with an unprecedented sensitivity in an unexplored region. With an optimal cavity

design, we could reach even better sensitivity.

128



Chapter 7

Photonic Bandgap Axion Haloscope

Microwave cavities made out of normal metals are incompatible with large magnetic fields

required for dark matter searches, limiting the maximum achievable Q-factors (Qc ≪ QDm).

More importantly, the stimulated emission technique I discussed in the last chapter is de-

pendent on the Q-factor of the cavity to be greater than the dark matter wave. In this

chapter, I am going to discuss new fabrication techniques using photonic bandgap material

to achieve high Q-factors. Beginning with an introduction to the physics governing photonic

bandgap (PBG) and how a defect could localize an EM mode acting as a low-loss cavity. I

will describe a few examples which satisfy the cavity requirements for a haloscope experi-

ment. Then, practical implementation of such structures will be discussed, along with their

pros and cons. Lastly, I will discuss the final design of a photonic bandgap cavity and low

temperature measurements demonstrating its successful implementation.

7.1 Introduction

Advances in semiconductor physics have enabled us to tailor the electrical properties of

certain materials, thereby initiating the transistor revolution in electronics. It is hard to

overstate the impact these advances have had on our society. In late 80’s, scientists proposed

new ideas where the optical properties of a material could be controlled by creating artificial

crystal structures. Eli Yablonovitch94 and Sajeev John95 published two milestone papers on

photonic crystals in 1987 opening up an interesting field of research which would revolutionize

the optoelectronics industry, doing for light what silicon did for electrons.
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7.1.1 What is a Photonic Bandgap (PBG)?

The control of electric currents achieved with the semiconductors such as silicon is dependent

on a phenomenon called the bandgap: a range of energies in which the electron is blocked

from travelling through the semiconductor. Scientists have produced material with a pho-

tonic bandgap- a range of wavelengths of light which is blocked by the material. The analogy

between electron-wave propagation in real crystals and the electromagnetic-wave propaga-

tion in a multidimensional periodic structure has proven to be a fruitful one. It allows us

to manipulate light in addition to electric currents. Photonic crystals occur in nature in the

form of structural coloration and animal reflectors as shown in Fig. 7.1.

(a) Opal Armband (b) Peacock Feathers

Figure 7.1: Natural periodic micro-structures responsible for the iridescent color in stones
and feathers. Source: Wikipedia

The existence and properties of an electronic bandgap depend crucially on the type of

atoms in the material and their crystal structure - spacing between the atoms and the

shape of crystal they form. In the optical analogue, atoms or molecules are replaced by

macroscopic media with differing dielectric constants, and the periodic potential is replaced

by the periodic dielectric function, giving rise to a band structure for photons similar to the

electrons in semiconductors.

One of the simplest example of a photonic bandgap material is a multi-layer dielectric

structure, such as a quarter-wave stack. It consists of alternating layers of material with

different dielectric constants, one you may find in reflective coating on your sunglasses. Light
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of a certain wavelength, when incident on such a layered material, is completely reflected.

The reason is that the light wave is partially reflected at each interface and, if the spacing

is periodic, the multiple reflections of the incident wave will destructively interfere, blocking

the wave to propagate in the forward direction. This technique is really useful to produce

ultra-high reflectivity mirrors (Bragg mirror) achieving 99.999% or better over a narrow

range of wavelengths. If a photonic crystal prohibits the propagation of EM wave of any

polarization traveling in any direction for some frequency range then we claim the crystal

has a complete photonic bandgap. Typically, a dielectric lattice periodic along three axes

shows a complete PBG and we are interested in such structures for dark matter applications.

7.1.2 Why do we need a photonic bandgap?

Before we dig deep into photonic crystals, let me explain a few challenges we face with the

current haloscope style cavities and their dominant loss channels. A dark matter detection

cavity is a typical right-cylindrical cavity optimized for a TM010 mode profile as shown in

Fig. 7.2. Due to the presence of a large magnetic field, we cannot use any superconducting

cavities and thus, forced to use copper as the outer material. The electric field of a TM mode

mainly points along the z-direction which allows the largest coupling C010 = 0.69 for axion

to photon conversion. However, this means that the amplitude of magnetic field at the metal

surfaces is maximum, which causes dissipation of the stored energy to the walls. We can

separate the contributions due to side-walls (Qsw) and the end-caps (Qec).

1/Qtot = 1/Qsw + 1/Qec (7.1)

For a typical cavity geometry made out of copper, with the help of simulations, we estimate

Qsw ≈ 1.15 × 105 and Qec ≈ 106. This indicates that the loss on side-walls is a dominant

factor. The goal of this exercise is to shape the field distribution such that the amplitude of

magnetic field is minimized at the cavity walls and thus, the losses to achieve high-Q.
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Figure 7.2: Empty cylindrical cavity. Electric field profile of a TM010 mode with field
pointing along the axial direction. The radial distribution follows a Bessel function with an
anti-node at the center.

In case you have forgotten, the form factor or coupling ratio C is defined as

Cmnl =

∣∣ ∫ B⃗ · E⃗mnl dV
∣∣2

B2
0V

∫
ϵ(s)|E⃗mnl|2 dV

(7.2)

7.2 Computing the bandgap

The propagation of light in a photonic crystal is governed by the four macroscopic Maxwell

equations, which is simplified by the assumption of no sources of light and no free charges

or currents. For a 1D quarter wave stack described above, we can still use the wave optics

we learnt in our undergraduate class to compute the layer thickness and the bandgap for a

given set of materials. However, as the structure complexity grows, numerical calculation is

more efficient and accurate to compute the band-structures which is otherwise not feasible

with analytical calculations. It is useful to note that the Maxwell equations are linear in

frequency and thus, all the computational frameworks initially developed for the optical

regime is applicable at microwave frequencies. An useful metric to characterize the PBG

which is independent of the scale of the crystal is the gap-midgap ratio, defined as ∆ω
ωm

,
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where ωm is the frequency at the middle of the gap. The size of the band-gap is often

quoted in percentage and the band diagrams are plotted in dimension less units for both

frequency ωa/2πc and wave-vector ka/2π, where a is the lattice constant.

For a normal incidence at the interface of two materials with refractive indices (
√
ϵ) n1 and

n2 and thickness d1 and d2 = a− d1 respectively, the gap is maximized when d1n1 = d2n2,

or equivalently, d1 = an2/(n1 + n2). The gap-midgap ratio between the first two bands is

approximately96

∆ω

ωm
≈ ∆ϵ

ϵ

sin(πd/a)

π
(7.3)

and in this specific case, the midgap frequency can be shown to be

ωm =
n1 + n2
4n1n2

2πc

a
(7.4)

Using the vacuum wavelength relation λm = 2πc/ωm, we can check that d1 = (1/4)(λm/n1)

and d2 = (1/4)(λm/n2), which means that the individual layers are exactly a quarter wave-

length in thickness, thus, the name quarter-wave stack.

7.2.1 Computational tools

There are multiple software tools available in the marker which use different methods to solve

the EM wave equations in a given geometry. The two most common methods are Finite-

Difference Time-Domain (FDTD) and Finite Element Method (FEM). Both have their own

strengths and weaknesses, for example, FDTD can cover a wide frequency range in a single

simulation run and treat nonlinear material properties in a natural way. On the other hand,

FEM can handle any complicated geometry with relative ease. During my research, common

software tools using FEM are - Ansys HFSS, Comsol and for FDTD - mpb 1 and Meep 2.

For simulating periodic structures, FDTD tools are very efficient in terms of computational

1. https://github.com/NanoComp/mpb

2. https://github.com/NanoComp/meep
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resources as well as time 3. Therefore, I computed most of the band structure simulations

using mpb96,97 and the time domain simulations using Meep. Both these packages have

excellent resources and examples on the web to follow. Let me show you an example of

computing the band-structure of a 1D quarter stack formed by alternating layers of ϵ1 = 1

(air) and ϵ2 = 11.2 (Sapphire) using Meep. Numerically, this structure produces a gap of

size 72% for d1 = 0.77a and d2 = 0.23a as shown in Fig. 7.3.

Figure 7.3: Band structure of a Bragg stack. (Top) A schematic of Bragg stack de-
picting alternating layer of dielectric materials. (Bottom) The photonic band-structure of
a multi-layer film with lattice constant a and alternating layers of widths equal to quarter
wavelengths. The dielectric constant of these alternating layers is ϵ1 = 1 (air) and ϵ2 = 11.2
(sapphire).

One of the main advantage using Meep is the ability to solve the problem over one lattice

period and assign a periodic boundary condition to simulate an infinite crystal. This makes

the computation fast without taking too much memory. Comsol and HFSS also support

periodic boundary conditions but require expensive licensing fee. Meep is open-source and

3. Also, I got a chance to collaborate with one of the founding fathers, S. G. Johnson who developed the
Meep package at MIT.
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easy to follow with python interface.

7.2.2 Defect as a cavity

So far, we have discussed the band structure of a perfectly periodic system, but what happens

if this translational symmetry is broken by a defect? In Fig. 7.3, the shaded region where

the bandgap appears, the density of states (number of allowed modes per unit frequency) is

zero but modes are allowed to exist if they are evanescent. Thus, defects may allow localized

modes to exist, if the frequencies lies inside the bandgap. It must exponentially decay once

it enters the crystal and the multi-layer films on both sides of the defect behaves like a

frequency selective mirror, similar to a Fabry–Pérot cavity as shown in Fig. 7.4.

Figure 7.4: Defect in a Bragg stack. A defect created by removing a dielectric layer. The
maroon curve represents the electric field associated with the localized mode created inside
the bandgap (for on-axis propagation).

In terms of a haloscope experiment, the cavity should have the following properties:

• Finite form-factor C ⇒ TM0n0 type mode profile is preferred

• High Q-factor

• A large volume, O(λ3)

• Tunable cavity mode is a bonus
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This implies that the structure is macroscopic and cannot be fabricated using lithography

tools. The material should have a low-loss or equivalently, negligible loss tangent (tan δ).

We will keep requirements in mind before while choosing a photonic crystal lattice.

7.3 Woodpile with an omni-directional bandgap

Following examples from the book, “Molding the flow of light”96, I chose the woodpile

structure as our subject of interest due to the presence of a complete bandgap. A woodpile (or

a log-cabin) structure is a stack of dielectric “logs” with alternating orthogonal orientations.

It consists of four-layers arranged in a ABCD sequence in which C and D are the layers with

same orientation as A and B, but are offset by half of the horizontal spacing as shown in Fig.

7.5. The dielectric logs form an FCC lattice stacked in the [001] direction. As I was more

familiar with HFSS for EM simulations due to experience with circuit-QED simulations, I

spent a considerable time implementing periodic structure simulations which would abruptly

terminate due to finite RAM memory issues. A couple of months were spent to optimize

the simulation parameters, implementing periodic boundary conditions to avoid simulating

large crystal geometries, but, all in vain. Under Steve’s supervision, I was able to setup the

simulation of a woodpile structure in Meep and never looked back.

After a detailed literature survey of various dielectric materials, we chose Alumina as our

initial prototype test material. It has a large dielectric contrast to give a reasonable bandgap,

readily available and low-loss at microwave frequencies with an option to switch to ultra low-

loss Sapphire if everything works out. I made a woodpile structure out of Alumina bars with

a cross-section of 2.5mm × 2.5mm and length 150mm to fit 15 periods in the horizontal

plane (XY ) plane and 10 periods along the vertical direction (Z). To keep uniform lattice

spacing between bars, I designed and 3D printed a support structure made out of plastic.

It made the assembly convenient and error-free. In order to characterize the properties at

room temperature and validate our simulations, we mounted a set of dipole antennae at the

two sides as shown in Fig. 7.5 and connected the two ports to a network analyzer. We
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measured the forward transfer function S21 and saw a clear dip in transmission indicating

the presence of a bandgap as shown in Fig. 7.5. The measured bandgap size and frequency

range matched very well with the simulation results.

Figure 7.5: Photonic band-structure of a woodpile structure. A schematic showing
the ABCD sequence of dielectric layers. The computed band-structure of a FCC type lattice
with 16% omni-directional bandgap. The measured band-structure of a woodpile in the lab
showing a forward transfer function S21 using a network analyzer. A sharp drop in the
transfer function matches very well with the simulated results validating The insert shows
an actual log-cabin made out of Alumina bars.

Defect inside a woodpile crystal

Next step, we create a cavity inside this structure. In order to do so, we remove a small

section of the log in the middle of the structure forming a point defect. This small defect

can be thought of as a rectangular cavity formed by dielectric walls and if the mode of the

cavity lies within the bandgap then the field exponentially decays within the crystal forming

a localized mode. By varying the size of this defect, we can also tune the frequency of this

localized mode. Fig. 7.6 (a) shows the electric field profile of such a mode localized in the

defect where most of the EM energy is stored.
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One remarkable feature of photonic crystals is that the bandgap is a property of the unit

cell and is independent of the number of unit cells. Practical limitations to build and test,

lowers the number of periods but as confirmed by Fig. 7.5, the size of the bandgap doesn’t

change significantly. The effect of a finite number of unit cells is (a) to allow propagation

via evanescent modes inside the gap and (b) introduction of defect modes and surface states.

Having a small number of cells doesn’t change the size of the bandgap, but it does allow

significant transmission near the edges of the gap where the decay of the evanescent mode is

slow. This leads to dependence of radiation loss on the number of periodic layers surrounding

the defect as evident from Fig. 7.6. There are two internal loss channels in the photonic

cavities - radiation and material loss. Radiation loss refers to the loss of energy to the nearby

surrounding whereas, material loss constitutes scattering of waves at different interfaces and

dissipating energy through the phononic modes.

Q-factor of a woodpile cavity

Meep computes the time response of a field when a point source placed near the defect tries

to excite the resonance mode with a broad frequency range. The ring-down of the field

amplitude tells us the decay constant or equivalently, the Q-factor. In order to study the

contribution of radiation losses, we set the material losses to zero and vary the number of

layers surrounding the defect. As one would expect, the Q exponentially increases with the

number of layers, thus, depending on the application we can choose an optimal number of

layers such that it’s a negligible effect. Using perturbation theory, we can then compute the

fraction d of total EM energy stored in the dielectric and estimate the total Q-factor as

1/Qtot = 1/Qrad + d tan δ (7.5)

where d is given by,

d =

∫
Vd
ϵ(d)E⃗ · E⃗ dV∫

V ϵ(s)E⃗ · E⃗ dV
(7.6)
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Figure 7.6: Defect cavity inside a woodpile structure. (Left) Electric field profile of
the mode trapped inside a point defect; grey represents the outline of dielectric logs from
a top view (Right) Actual image of the defect created with Alumina logs (c) Exponential
increase in radiation Q with the increase in number of layers. Green dashed line corresponds
to the number of layers in the actual prototype with an expected Qrad ≈ 2× 104.

Cryogenic measurements

After obtaining the desired performance at room temperature, we measure the same at

low temperatures. The permittivity of the material ϵ as well as the loss tangent, both

change significantly with temperature. The change in ϵ shifts the frequency of the system.

The dielectric loss of materials such as Alumina or Sapphire drops by 2 to 4 orders of

magnitude as the material cools down and phonons freeze out98,99. On the other hand, the

thermal conductivity of dielectric materials also go down, making it difficult to reach thermal

equilibrium with the physical surrounding. Hence, it is very crucial to design a prototype

such that the entire thermal mass reaches the expected temperature in a reasonable amount

of time. For this purpose, I made the entire support structure out of copper and added

grooves to position the logs, as well as increase the contact area for better thermalization.

Adding copper at the ends also provides reflective boundary condition, enhancing the Q-

factor of the cavity. An example of such a prototype is shown in Fig. 7.7. We bolted this

cavity to the 1K stage of the dilution refrigerator which has a much larger cooling capacity
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than the MXC plate and we expect most of the improvement in Q be visible below 15K.

Figure 7.7: Woodpile cavity for cryogenic measurements. (Left) Grooves to keep the
dielectric bars in place and increase surface area for thermal conduction. (Right) Copper
enclosed woodpile cavity mounted to 1K plate of the dilution refrigerator.

While cooling down, I recorded the transfer function of the cavity to track the mode

frequency as well as Q. The frequency of the mode shifts higher as the geometry contracts

under thermal gradient and the Q-factor improves by a factor of almost 3. The initial results

looked promising. The internal quality factor of the cavity mode increased from 15, 000 at

300K to 75, 000 at 1K limited by the losses on metallic walls. Addition of extra periods

would make the structure even bigger, which makes it unfit for actual experiment.

Tuning the mode frequency

The results from first prototype were promising and matched our simulation results well.

Next, I studied the feasibility of a tuning mechanism to change the frequency of the cavity.

The first thing that I tried was to increase the size of the defect along the log, making a longer

cavity, thus, decreasing the frequency. However, if we carefully look at the geometry of the
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Figure 7.8: Tracking cavity frequency. Measurement of the transfer function during
the cool-down period. The frequency of the mode increases as expected due to thermal
contraction and change in the dielectric constant of alumina bars.

cavity, the second largest dimension is unchanged which means the shift will be minuscule.

We verified with the help of simulations that the mode frequency didn’t change by more

than a percentage, but the radiation Q dropped by a factor of 2. The other way would be to

change the size by removing multiple sections as shown in Fig. 7.9. It changes the frequency

by a considerable amount, however, at the expense of higher radiation losses. In addition

to that, the mechanical tuning of multiple bars is very difficult to control in experimental

conditions.

Empirically, mechanical movements at cryogenic temperatures are very difficult to im-

plement and ensure repeatability. Moreover, the size of the crystal required to achieve a

Q ≥ 105 is too large to fit inside a 75mm diameter bore of a 14T solenoid magnet ordered

at Fermilab for axion experiment. I did try to find a low-loss material with a larger dielectric

contrast such as Rutile (ϵ ∼ 100)100,101, which would shrink the entire geometry by a factor

of 3 but couldn’t find a vendor to provide the logs as per our requirement. Therefore, after

a very detailed study and discussion, we had to look for a different approach/design which
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Figure 7.9: Tuning a woodpile defect cavity. (a) The length of the cavity along the
bar is increased to tune the mode frequency. (b) A wider cavity volume can be formed by
removing multiple sections of the bar which leads to appreciable change in the frequency.
Both have radiation Q lower by a factor of 2

would fit inside the magnet and satisfy all the desired properties of an axion cavity.

While I was investigating the woodpile structure, another research group in Italy had

tried a triangular lattice of rods102 to protect the mode in the radial direction. It has a 2D

PBG with no protection in the z-direction. Fig. 7.10 shows an example of a triangular lattice

with a rod removed from the center. The core acts as a cavity with field mostly pointing

along the axial direction. The reported cavity is Q ≈ 3 × 105 at 4.2K. However, the form

factor takes a hit as the field changes its direction once it crosses the first layer.

However, I could anticipate a few reasons why this design was not pursued further in their

work. First, the bandgap size is not large (∼ 20%), requiring more periods to protect the

field from reaching side-walls. Second, the number of moving parts (rods) probably makes

it difficult to assemble and ensure all the bars are thermalized well.

7.4 Bragg Fiber

The next design that we tried was again based on an example from the book which had been

implemented for efficient transport of optical light. “Bragg Fiber” as the name suggests is
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Figure 7.10: 2D triangular lattice with a defect. A mode localized in the center of a
lattice formed by triangular arrangement of dielectric rods (grey circles). A rod from the
center is removed to form a defect which acts as a cavity with an electric field profile pointing
along the z-direction.

based on the Bragg stack we discussed earlier. Think of it as a 1D stack which is bent to

form a cylinder. It was first proposed by Yeh et al.103 in 1978. The continuous translation

symmetry along the axial direction (Z) and the continuous rotational symmetry in ϕ (the

azimuthal angle) means that that the eigenstate can be written in the separable form:

Hkz ,m = e ιkz z+ιmϕ hkz ,m(r), (7.7)

which has been reduced to a 1D problem for the radial (r) dependence. It is sufficient to

obtain a 1D bandgap in a cylindrical geometry due to conservation of angular momentum m

in analogy with quantum mechanics. The flat multi-layer structure exhibits a large bandgap

72% for a air-sapphire layered structure as shown in Fig. 7.3.

In this case, the cavity is formed by removing a few dielectric layers from the middle

such that the resulting geometry resembles a hollow core. The radius of the innermost layer

determines the mode frequency and can be well approximated with the solution of a metallic

cavity. For a TM mode, the solution is given by zero-order Bessel functions such that the

resonance frequency for a TM010 mode is given by ωn = 2.405R0/
√
ϵµ, where R0 is the inner
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radius. The Bragg cavity was simulated in Meep as well as HFSS to verify the field field

distribution as well as the expected Q. As seen in Fig. 7.11 (b), the field amplitude falls

of exponentially away from the center, however, the profile resembles a TM030 mode. This

was unexpected but it makes sense because the overall radius of the cavity is much larger to

support a higher order mode and the dielectric only provides a soft boundary. It lowers the

form factor at the expense of a larger detector volume.

As the radiation Q exponentially increases with the number of layers, it requires only

a few layers to achieve the desired Qrad = 103. The field is strongly attenuated per unit

layer as the bandgap is larger. We get another factor of enhancement due to the reflective

boundary provided by the copper outer layer. The idea of combining the two - a few layers

of Bragg fiber combined with a metallic outer wall, to suppress the Ohmic losses but not

eliminate them, stems from Miyagi et al.104,105, in the context of minimizing transmission

losses at infrared wavelengths.

In order to understand this, let’s remind ourselves that Ohmic losses are proportional

to the electric field inside the metal, which is what causes the the current J = σE, so the

power loss can be written as Ploss ∼
∫
J · E =

∫
σ |E2|. However, for a perfect metal, this is

zero (E = 0 inside a perfect conductor).

In order to compute the losses due to finite conductivity, we can use perturbation theory

(Chapter 8 Jackson, Eq (8.82)) to first order in the skin depth and write down the expression

for power loss on a normal metal surface as

Ploss =
µCu ω δ

4

∮
s
|Hϕ|2 ds (7.8)

where µcu is permeability of copper, ω is frequency of the mode, and δ is anomalous skin

depth. From fig. 7.11 (b), we can check that the presence of dielectric layers suppresses

the magnitude of Hϕ field reaching the metal surface by a factor of at least 10 compared to

an empty copper cavity. And thus, the losses by a factor of 100. We qualitatively estimate
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the Ohmic losses using Eq. 7.8 and predict Q-factors due to side-walls Qsw = 14× 106 and

end-caps Qec = 106. Compared to an empty copper cavity we discussed earlier, the losses

on side-walls are down by a factor of 100, making the loss on end-caps the dominant factor.

This implies that the bandgap is really effective in shaping the field distribution along the

transverse direction.
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Figure 7.11: Bragg fiber. (a) Schematic showing the alternating layers of air and sapphire
forming a Bragg fibre. (b) A mode localized in the center with a frequency in the middle
of the gap, grey lines showing the dielectric layers and copper metal at the end. Electric
and magnetic field profiles resembling TM030 with an exponential tail reaching the end. (c)
Radiation Q as a function of the number of layers.

7.4.1 Tapered dielectric shells

Now, we need to do the same for end-caps. The Bragg fiber does not exhibit bandgap

along the axial direction, but, we can achieve a similar effect as bandgap by introducing a

taper profile along the axial direction. As we taper the inner radius, the cutoff frequency

for MM mode goes up, and eventually it transitions to an exponentially decaying mode as

it passes the operating frequency. It is exactly the same concept as evanescent holes on a

flute cavity which prevents the field from leaking out. However, we must practice caution

and not taper too rapidly to avoid any scattering into other modes (different propagation

constant at the same ω). But if we taper it slowly enough, there is an “adiabatic theorem”

(as reviewed in e.g.106,107) the scattering into other modes becomes negligible and you get

reflection approaching 100%.
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The geometry of the tapered Bragg-fiber is shown in Fig. 7.12 where I parameterize

the surface profile to follow a cubic polynomial. I simulated the cavity performance of this

geometry varying the height of the taper and the cut-off radius. Based on these results, we

decided to choose the height and radius such that the radiation Q ≈ 107. Counter-intuitively,

the radiation loss along the axial direction does not decrease monotonically with the height

of the taper, instead, increase after a certain height as the taper slowly guides the light

outside the cavity. This implies that the taper should have a sharper cut-off to keep the

light from leaking out, which also helps to keep the cavity extents limited.
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Figure 7.12: Tapered Bragg fiber. Electric field profile of a Bragg fiber with tapered ends
to prevent the field from reaching the copper end-caps. The magnitude of the field reaching
the ends of taper is negligible and the resultant Q-factor is high.

The tapered Bragg fiber cavity meets all the criterion for an axion cavity, however, there
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is one little problem. How do we make such a dielectric structure? There are fabrication

facilities to 3D print structures out of alumina, zirconia etc. Their method uses additive

materials where a binding material is added to the dielectric which diffuses out when the 3D

printed ceramic is baked in a kiln. This leads to air cavities in the structure degrading the

purity of the material and loss properties. While this is a convenient option, the finished

product after sintering is prone to deformation. I had ordered a few straight cylindrical

shells to test the geometry and I found the shells elliptical and not circular as per the

specifications. We could check the bandgap and Q-factor at room temperature but due

to poor loss properties, we couldn’t decouple the losses between the metal walls and the

dielectric. So, we decided to try out a vendor for sapphire. It is grown in crystalline form

which has really low dielectric loss tangent at microwave frequencies and better thermal

properties at cryogenic temperatures than alumina. It is relatively easier to procure straight

cylindrical shells of any size, surface finish etc. However, free-form machined sapphire like

the ones we require is very much in demand, which makes the tapered structures super

expensive, about $100K for one shell. While we were again waiting to find a vendor to build

this taper geometry, I used another approach inspired from21, where the end-caps are shaped

into a cone in the middle to lower the current dissipation at the surfaces. This is a clever

approach and solves the issues we have been facing with the fabrication of tapered sapphire

shells.

7.4.2 Conical taper in metal end-caps

From fig. 7.11 (b), we can infer that the maximum dissipation occurs in the central region as

the magnitude of Hϕ is maximum. We can minimize the extent of field on the metal surface

by blocking the field from reaching it. One way would be to introduce a conical taper in

the central region. Smoothly but sharply varying the radius of the cone rapidly changes

the cut-off frequency of the hole exponentially suppressing the field at the metal surface.

We confirm the same in Fig. 7.13. The magnitude of the electric field reaching the conical
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surface is almost an order of magnitude smaller than a cavity with flat end-caps.

Figure 7.13: Bragg fiber with conical end-caps. (Left) Electric field profile of the Bragg
fiber with a flat end-cap as simulated in HFSS. (Middle) Electric field profile with conical
taper in copper. The magnitude of the field reaching the ends of taper is negligible and the
resultant Q-factor is high. (Right) CAD model of the Bragg fiber cavity with two layers of
dielectric shells enclosed in a copper outer layer with conical end-caps and a SMA antenna.
PEEK screws are used at the periphery to guide the shells in place.

Design considerations

I performed a parametric sweep varying the upper radius and height of cone to search for

an optimal design that maximizes the Q-factor of the cavity. The final design with optimal

parameters is simulated in HFSS to estimate the losses due to metal and dielectric. In order

to decouple the loss channels, the other channel is set to be lossless by assigning either

perfect electric (PEC) boundary condition or setting the tan δ to zero. The value of surface

conductivity of copper σCu used in the simulation has been computed at 12GHz in the

anomalous skin depth regime using reference108. The dielectric shells are grown using the

Stephanov method by Rostox-N Ltd (Russia). Due to lack of published data, we use the

dielectric loss tan δ ∼ 7.2× 10−6 quoted in109. Most of the material characterization in the
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Figure 7.14: Parametric sweep to determine the optimal cone dimensions. (Left)
CAD model of the Bragg fiber cavity with two layers of dielectric shells enclosed in a copper
outer layer with conical end-caps and a SMA antenna. PEEK screws are used at the periph-
ery to guide the shells in place. (Middle) Electric field profile of the Bragg fiber with a flat
end-cap. (Right) Electric field profile of the simulated structure in HFSS. The magnitude of
the field reaching the ends of taper is negligible and the resultant Q-factor is high.

literature is often conducted up to 4K, however, we use the same values to compare the

measurements performed at 20mK. Hence, there is some uncertainty associated with the

simulation results and we try our best to refine these parameters as per the measured values.

Given the short lead time and one experimental demonstration, we decided to use the same

vendor to procure the sapphire shells for our first prototype.

In order to hold the shells in place, we use PEEK screws at the periphery. The threaded

screws poke out in the field region as shown in Fig. 7.13, however, their contribution to the

loss is negligible but sensitive to the penetration inside the cavity volume. Even with a value
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of tan δ = 10−3 for PEEK at room temperature, Qtot > 107 is obtained with lossless metallic

walls and dielectric shells. Putting it all together, the expected Qtot = 6× 106. The volume

of the cavity is 204 cm3 and form factor can only be calculated using HFSS, C030 = 0.062.

While designing the cavity components, I decided to keep the seams away from the central

region, thus, the end-caps attach to the copper tube at the farthest radial point where the

field magnitude is minimum. The other design includes slicing the cavity in half along the

axial direction. Admittedly, there is still possibility to optimize the seams further to reduce

the losses, for example, a knife edge at the seam will ensure light tightness and better design

for electroplating. For our first prototype, we ordered out cavity parts CNC machined and

electro-polished by an external vendor. I designed and machined a three-legged assembly to

hang the cavity from the MXC plate and vertically position it to sit inside the magnet bore

such that their centers coincide with each other as shown in Fig. 7.15.

Characterizing the cavity

We measure the resonance frequency of the cavity mode and its quality factor using a Vector

Network Analyzer (VNA), recording the reflection (S11) and transmission (S21) transfer

functions. First, the empty copper cavity is characterized at room temperature to get an

estimate of the copper conductivity at room temperature. It helps us tune the simulation

parameters. At 300K, the measuredQtot ≈ 2×103 corresponds to a surface copper resistivity

0.0213Ω. I then place the sapphire tubes inside the PEEK screw boundary, before enclosing

it with the copper outer tube and tightening the end-caps with brass screws. We again

measure both S11 and S21 to extract the internal Qi and the coupling Qc as shown in Fig.

7.16 (a). The measured resonance frequency of the cavity ν0 = 12.0083GHz, which is very

close to the designed value of 12GHz. The internal Quality factor Qi = 2.4 × 105 is lower

by a factor of 2 as compared to simulated value. However, due to lack of an independent

measurement of the loss tangent of sapphire tubes, it is difficult to draw any conclusions.

We can set the coupling Q to the desired value by varying the length of the dipole antenna.
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Figure 7.15: Bragg fiber prototype. (Left) Fabricated copper end-caps with PEEK screws
to guide the shells in place. Top view of the shells mounted inside the copper enclosure.
(Middle) CAD assembly of the mounting fixture. The cavity is attached at the bottom of
the fixture to correctly position it inside the magnet bore. (Right) The entire assembly is
hanging from the MXC plate. Two SMA rf cables are connected to the top and bottom
ports to measure both transmission and reflection transfer functions in situ. The bottom
port is very weakly coupled Qc1 > 108 and the top port is slightly over coupled at the room
temperature such that it is close to critical coupling at low temperature.

The transfer function of the cavity in the reflection is assumed to be

S11 =
(κi − (κc + ι γ)) + ι(ν − ν0)

(κi + (κc + ι γ)) + ι(ν − ν0)
(7.9)

where Qi = ν0/2κi, Qc = ν0/2κc and γ is an asymmetry term. In order to measure it accu-

rately, we perform a calibration using Keysight N4691-B E-Cal tool to account for the phase

delay and attenuation due to microwave cables. However, at cryogenic temperatures, such
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a calibration is not routinely done. It is a reasonable assumption to neglect the variations

due to cables as the band of interest is very narrow.
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Figure 7.16: Q-factor measurements. (Left) Measurement of the reflection transfer func-
tion to extract the coupling and internal Q-factor of the cavity at room temperature. Data
is fitted (red lines) to the magnitude and phase response to extract Qi = 0.24 × 106 and
Qc = 0.59 × 106. This tells us that the cavity is under-coupled at room temperature. We
neglect the coupling to the other port as the measured power is below the noise-floor of the
VNA. (Right) Measurement at 20mK shows significant improvement in Qi = 1.46 × 106,
surpassing the axion Q.

We measure the resonance frequency of the TM030 mode cavity once the fridge reaches the

base temperature and measure it again after a couple of days. We suspect the dielectric takes

longer to thermalize but do not observe a significant change in the cavity parameters over

time. It implies that the dielectric shells cools down efficiently in the current configuration.

As one would expect, the frequency of the mode is shifted higher by ≈ 40MHz attributed to

the thermal contraction and change in dielectric constant. The measured internal Q-factor

of the cavity is Qi = 1.46× 106. This a very remarkable result for future axion experiments

as the cavity Q-factor is officially greater than Qa = 106.

The measured Qi is slightly lower than the expected value by 30%. However, it is good

agreement given the uncertainty in material parameters. We did observe radiation leakage

outside the cavity, picked up by a bare coax cable with center pin exposed. It could be due

to the seam at the end-caps. The other possibility is higher loss tangent of the sapphire

as compared to QUAX group110, where the tubes were annealed at very high temperature

(1800◦C) to relax the internal stresses and remove any contaminants on the surface. We
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did try to anneal the tubes in an open-air furnace reaching temperatures up to 1300◦C but,

didn’t see much improvement. The tubes were sonicated in a series of solvents (TAMI)4 to

remove any organic impurities present on the surface but that also didn’t have any positive

effect. It is a common procedure in superconducting qubit fabrication using sapphire wafers.

Interestingly though, if the dielectric losses are dominant, we can investigate that by

measuring the Q-factor in the presence of a static magnetic field. A majority of the dielectric

loss is attributed to two-level systems (TLS) caused by paramagnetic impurities such as Fe3+

and Cr3+. We could just be unlucky as the absorption lines in these two are reported at

12.03GHz and 11.45GHz respectively. In other studies, it has been demonstrated that the

Q-factor of superconducting resonators increase as a function of the input power, indicating

saturation of such absorptive losses. Fortunately, we can push the electron spin resonances to

higher frequency by applying a magnetic field. The evidence for paramagnetic impurities was

first reported in whispering-gallery-mode resonators made out of HEMEX sapphire99 where

the measured loss tan δ ∼ 10−9.

I summarize the measured values of cavity parameters at room temperature and cryogenic

temperature along with the parameters used in simulations and their corresponding expected

values.

Table 7.1: TM030 Mode Parameters.

T(K) ϵr ρCu (Ohm-m) tan δ ν (GHz) Qi · 106

Sim. Meas. Sim. Meas.

300 K 11.44 1.68 · 10−8 4.87 · 10−6 12.005 12.008 0.52 0.24

20 mK 11.0 3.36 · 10−9 1.19 · 10−9 12.039 12.044 1.86 1.43

The cavity frequency and quality factor of the mode is very well modeled by the simula-

tions. A cavity with longer height will result in even higher quality factor as the surface-to-

volume ratio decreases, easily verified in HFSS. I believe this is a major factor in a higher

quality factor demonstrated by the QUAX group.

4. TAMI stands for Toluene, Acetone, Methanol and Isopropanol
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Ramping up the magnet

A solenoid magnet with maximum field up to 14T was used for this test. The Oxford Triton

dilution refrigerator was commissioned with this magnet in mind. We can see the giant

frame which support the dilution unit in Fig. 7.15 and the magnet is hanging from the

still shield which goes up to 4K. The cavity is vertically positioned in the center of the

magnet to minimize any differential forces which may arise if a quench occurs and prevent

any permanent damages to the fridge. Due to change in magnetic field, the Eddy currents

induced in the conductors gives rise to dissipating power which causes the fridge temperature

to rise. In order to minimize this, we keep the ramp rate low and let the fridge temperature

come back down and stabilize before recording the cavity transfer function.

The recorded data is fit according to Eq. 7.9 and the extracted cavity parameters are

shown in Fig. 7.17. It shows the internal quality factor Qi improves with the magnetic

field before saturating to a value which is about 5% higher, compared to 1.5× improvement

reported in110. In recent results111, it is reported that the bulk copper undergoes magne-

toresistance112 in high-field region, resulting in up to 2% positive change in quality factor.

The change in resistivity of copper is quadratic with field and reaches maximum at field

strengths greater than 5T . However, we see a 5% improvement at only 1T and the trend

in Qi and ∆ν follows very well the results presented in110. Hence, we conclude that the

improvement observed in Qi is due to paramagentic impurities pushed to higher frequencies

in the presence of magnetic field. We suspect that the Qi is limited by the dissipation on

copper walls and have not reached the stage where the dielectric loss starts to dominate.

7.5 Tuning the cavity mode

So far, I have discussed the simulations and measurements for a fixed frequency PBG cavity.

In a conventional haloscope cavity, a pair of metal or dielectric rods are used to tune the

cavity by moving their positions inside the cavity volume as shown in Fig. 7.18. While this
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Figure 7.17: Cavity parameters as a function of magnetic field. (Top) Internal Q-
factor increases with the magnetic field confirming our hypothesis about magnetic impurities
in the sapphire crystals. (Bottom) Change in the resonance frequency, agrees well with the
QUAX results Fig 4110, dip followed by saturation.

tuning mechanism has proven to be a reliable option, the rods poking the cavity volume,

adds an additional loss channel to the cavity mode. Therefore, we need a different method

to tune the cavity without degrading the internal quality factor. For the Bragg-fiber cavity,

I propose to use a tapered sapphire rod axially piercing the cavity in the center. The mode

frequency is tuned by longitudinal motion of the rod. The shape of the rod is tapered to

minimize scattering losses occurring at the interface114. In comparison, a straight rod with

the same diameter results in degradation of Q by a factor greater than 2. The diameter of

the rod is chosen such that the cut-off frequency of the coupling port is higher than the mode

frequency to prevent any additional radiation loss. The cavity simulations were performed

using COMSOL to study the tuning range and the Q-factor of the cavity as a function of the
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Figure 7.18: ADMX cavity tuning system. The left panel shows a cutaway view of
the CAD model. The middle panel represents a computer simulation technology microwave
studio simulation of the TM010 mode with each of the rods at 116deg from the center. The
right panel represents a picture of the system with the top end cap removed showing two
0.05 m diameter tuning rods and their aluminum-oxide ceramic axles.(Image credit: ADMX
Technical Paper 2021113)

rod penetration depth. It has the capability to simulate a 2D slice and use symmetry to

simulate the entire geometry with less computation resources.

Introduction of a dielectric rod in the center where the field concentration is high helps

us achieve large tuning. This is due to increased participation ratio of the dielectric which

pulls down the cavity frequency. Hence, in this configuration as the rod enters further in,

the mode frequency decreases as shown in Fig. 7.20. However, the quality factor shows

interesting variation dependent on the mode. The one with higher dielectric participation

sees increase in quality factor and this could be due to the reduction of losses on the metallic

end-caps. From Fig. 7.19 (left) it is evident that the magnitude of the field at the lower

end-caps is negligible as compared to the middle plot, resulting in lower dissipation losses

and thus, higher Q. We can conclude from this study that a large tuning is possible with

multiple potential modes to look for axions.
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Figure 7.19: Breaking the radial symmetry to tune the mode. Electric field profile
of the different modes, concentrated in dielectric (left), air (middle) or both (right) with a
tuning rod in the center.

7.6 Preparing for science run

After characterizing the first prototype of a photonic haloscope cavity, we started planning

to collect science data for a fixed frequency axion experiment. In order to successfully

commission a data run we need the following: (1) low noise-amplifier, (2) ADC for signal

digitization (3) calibrated noise source.

Low Noise Amplifier

We decided to use JPA as our first stage amplifier. Since we had developed a batch of

JPAs for qubit measurement setups, we used the same recipe and changed the junction

resistance to reach a maximum frequency close to 12GHz. A couple of JPAs were tested

which reached the desired frequency however, the magnitude response had a lossy feature

which was coupled to the resonance frequency of the device. Ideally, it is a loss-less device.

157



9

10

 (G
Hz

)

2

4
Q r

ad
10

6

0 10 20 30 40 50 60
Tuning distance (mm.)

0.005
0.010
0.015

C l
m

n

Figure 7.20: Cavity tuning with a tapered rod. Modes with quality factor greater than
106 are studied with their (Top) resonance frequency (middle) quality factor and (bottom)
form factor as a function of the penetration depth of the rod inside the crystal. The higher
frequency mode is the one localized in vacuum whereas the other one is concentrated in the
tuning rod.

This led us to investigate the design a bit more to understand if any of the device feature

is acting as an antenna, radiating energy to the lossy walls. I performed HFSS simulations

to check for any box-modes and standing mode resonances associated with the CPW traces.

The simulations do not predict any box-modes up to 14GHz. However, we found a couple of

resonances near the operating frequency localized near the input CPW section and the on-

chip flux bias line which could be radiating energy into the lossy walls as shown in Fig. 7.21.

It is still unclear if that explains the tunability of the lossy feature seen in the experiment.

So, we changed the design by shortening the input CPW section and removing the on-chip

flux line. An external solenoid coil is attached to the sample holder to flux tune it.

In the next cool-down, we tested the new design and the resonant mode was free from of

any loss feature as shown in the flux scan here. Instead, we observed additional flux loops

due to flux trapped in either the magnetic shield or the SQUID loops during the cool-down.

Fortunately, the feature is far away from the frequency of the cavity mode we are interested
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Figure 7.21: FSS Simulation of a JPA chip. Full device chip is simulated in HFSS to
debug the lossy mode. The on-chip flux line acts as a resonator with non-zero overlap with
the actual device. The frequency of this mode is close to 9GHz.

in. After biasing the JPA for gain, we obtain a 20 dB gain within a 3 dB bandwidth of

15MHz. The pump tone is set ∼ 500 kHz away from the cavity frequency where we see the

optimal improvement in SNR. The maximum improvement in SNR achieved with this device

is approximately 10 dB. Assuming the total system noise temperature of the readout chain

is dominated by the added noise of HEMT and its physical temperature, we can write the

T
off
sys = THEMT + Tphy = 3.2K + 4K = 7.2K.

Using Eq. 4.7 and Eq. 4.18, we can compute the total noise temperature of the output

chain when the JPA is turned on. We record the power spectral density at the cavity

mode frequency (νc = 12.044GHz), which is off-resonant with the pump tone at (νp =

νc+500 kHz). Fig. 7.23, shows the signal, pump and idler tones when the JPA is operational

for the case when the magnet is on. By measuring the SNRi = 9.93 dB, the total system

noise temperature is estimated to be T on
sys = 7.2K

10SNRi/10
= 0.730K. The quantum limit

at 12GHz is 576mK, which implies the amplifier is operating near quantum limit at 88%

efficiency.

In order to perform an absolute calibration, we would need a calibrated noise power

source such a SNT. We have installed a SNT on another output line to check if it is working
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Figure 7.22: JPA operation with magnet on. (Left) Phase response of the JPA as
the magnet field is ramped up to 5T. The change in resonance frequency is caused by the
residual magnetic field threading the SQUID loop mounted on top of the MXC plate. (Right)
Gain profile of the JPA after re-biasing at 5T magnetic field. The undulations are caused
by the reflections in the microwave lines due to slightly longer cable length in the current
cool-down.

as expected and add it to the cavity line in a future run.

Magnet ramp

We recorded the phase response of the JPA while ramping up the magnet as shown in Fig.

7.22. From the phase response, we infer that the magnetic field strength is non-negligible

above the MXC plate and any sensitive device should be magnetically shielded with Mu-

metal cans. After the magnet had reached 5T, it was set to persistent mode and we re-biased

the JPA to obtain a gain profile. Amazingly, the gain response of the JPA was stable and

had a peak value of ≈ 17 dB with 3 dB bandwidth of 10MHz and the noise performance still

close to the quantum limit.

Next day, we ramped the magnetic field to 10T and monitored the phase response of

the JPA. It still tuned with an external flux bias and showed gain of ≈ 17 dB with a stable

profile. It is a remarkable feat to achieve quantum limited amplification even in the presence

of a large magnetic field.
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Figure 7.23: Quantum limited amplification. Measured power spectral density of the
output chain when the JPA is off (Red) and on (blue). The measured gain of the JPA and
improvement in SNR at the cavity frequency. The measured gain of the JPA at the signal
(cavity) frequency is G = Son − Soff = 16.48 dB and SNRi = 9.93 dB.

Custom electronics

With the help of QICK collaborators, I received a custom FPGA firmware to digitize the

signal coming from the cavity and perform Fast Fourier Transform (FFT) on the board

itself. It also allows to collect an averaged trace which is very efficient in terms of down

time and the memory requirement. We tested the firmware by generating a sinusoidal tone

using one of the DACs and feeding it back to the ADC. There are two down-conversion

processes implemented in the firmware: the first inside the ADC (running at 1024MS s−1),

which applies a frequency shifting and decimation factor of 8 (BW=128MHz). This data

is then fed into the DDC + CIC block, which allows us to add extra down-conversion by

∼ 30mHz resolution with an internal DDS running at this decimated frequency. The output

is further filtered and decimated by a factor which can be configured between 1 and 1000.

The output samples are then routed into a hardware FFT with a configurable window and

fixed length of 65536 samples. This allows to obtain a spectrum with much finer resolution
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than the cavity linewidth ∆νc ≈ 8.5 kHz.

7.6.1 Projected sensitivity to axions

While we waited for the magnet ramp up, I estimated the integration time required to reach

the DFSZ and KSVZ sensitivity with the photon bandgap haloscope based on the measured

experimental parameters.

The signal power conversion from axion can be expressed as,

Pax = 5.0× 10−23W

(
Cγ

0.75

)( ρa
0.45GeV cm−3

)( νa
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(7.10)

where Cγ is the model dependent coupling coefficient with a value of −1.92 and 0.75 for the

KSVZ and DFSZ model, respectively.

0 2 4 6 8 10
Integration time (hrs.)

100

g

Tsys
N  = 0.76 K

Tsys
N  = 1.30 K

Tsys
N  = 7.20 K

DFSZ
KSVZ

Figure 7.24: Sensitivity to axion with quantum limited amplifier. Estimated integra-
tion time to reach KSVZ or DFSZ sensitivity with a photonic bandgap haloscope operating
in a 14T magnetic field and varied system noise temperatures. It is a remarkable feat to
achieve KSVZ sensitivity with a JPA operating near the quantum limit within an hour long
integration period. SNR=2 is assumed to place 90% confidence interval.
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7.6.2 Axion data collection

In order to set exclusion limit on the axion coupling with the photonic cavity and quantum

limited amplifier, we measure the power spectral density of the noise at the cavity frequency.

The incoming signal is down-converted using a LO set at νLO = νc + 10MHz. The down-

converted IF signal is amplified and filtered with a narrow band-pass filter before fed into

the ADC.

The CIC block of the QICK was set to decimate the signal by another factor of 4 to

filter out the noise at frequencies higher than (|νIF | > 32MHz). This gives us a frequency

resolution of the FFT to be 32MHz
216

= 488Hz, approximately 20 points within the cavity

linewidth which is plenty. We plan to collect an averaged trace from the board at a rate of

about 1 s−1.

Here is an example of the averaged trace around the cavity frequency. We see a dip at

the cavity frequency which is unexpected. There could be multiple reasons why this could

happen: (1) there is a hot source in the path which is emitting black body radiation at a

temperature greater than the cavity (2) there is a power leakage due to parasitic coupling

which is probing the cavity

We are investigating the cause of this leakage and hopefully solve this in the next cool-

down.

7.7 Summary

To summarize, we have demonstrated a novel photon bandgap haloscope for axion searched

with quality factor roughly 50× that of a copper cavity. The internal quality factor achieved

is greater than the intrinsic linewidth of the axion wave, which allows us to implement

quantum tricks to enhance the scan rate with techniques discussed in the previous chapters.

This is the first experiment in the world to achieve quantum limited amplification at 12GHz

in the presence of a 10T magnetic field. With lessons learnt in this cool-down we can
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Figure 7.25: Axion test data. Digitized power spectrum using the QICKfirmware44.

definitely conduct an axion search reaching KSVZ sensitivity within an hour of integration

window.
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Chapter 8

Future Dark Matter Search

There are two possible dark matter candidates which we are interested in and I believe

it is a good approach to first develop the detector technology for hidden photons which

doesn’t require a magnetic field. It makes the experimental conditions convenient and we

are benefited by the high quality factor achieved with superconducting cavities. On the other

hand, there are multiple ongoing efforts to conduct an axion search using dielectric cavities

made out of sapphire. The higher quality factor allows us to integrate the photon counting

and stimulated emission techniques to enhance the SNR even further. Yet another approach

which has delivered promising results is the development of cavity coated with thin layer of

superconducting material which can be operated in low magnetic field region. The reduction

in signal power can be compensated by the drastic increase in quality factor. It will be a

rewarding journey for the community to join hands and approach this search cohesively.

8.1 Axion search with qubits

As mentioned earlier, an axion search with a photon counter would drastically increase the

scan rate of the experiment, covering an octave in frequency within a day which would have

otherwise taken a couple of years with a quantum limited amplifier. However, the presence

of a large magnetic field makes this a difficult task to realize in real life. I have demonstrated

in this work that photonic bandgap haloscope is a viable option to achieve higher quality

factor even in the presence of a large magnetic field. The increased photon lifetime in the

cavity allows us to make enough repeated QND measurements to bring down the detector

based errors well below the SQL.

There is a recent proposal from our collaborator115 to transfer the photons converted

from axions to an auxiliary detection cavity which is far away from the magnetic field.
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This concept is called CEASEFIRE (Cavity Entanglement And Swapping Experiment For

Improved Readout Efficiency), where a non-linear element, coupled to the two modes is used

to facilitate the transfer. The modulation of mutual inductance at the difference frequency

results in a state-swap at a rate determined by strength of the modulation (or pump),

coupling between the cavities and coupler, and non-linearity of the coupler. An experimental

demonstration is in works at University of Colorado-Boulder in Lehnert group, and hope to

hear interesting results soon.

Moreover, the non-linear coupler allows the transfer of photons between the two cavities

even when they are off-resonant. This implies we can operate a tunable axion cavity and

use the same detector to cover a finite frequency range by just adjusting the frequency of

the pump. The same coupler can also be used to swap and prepare the axion cavity in

a Fock state to enhance the signal rate. For a photonic cavity such as one in QUAX110,

|n⟩ = Qc
QDM

− 1 = 5 Fock state will be optimal to maximize the SNR. Of course, the actual

efficiency of the entire scheme will determine the overall enhancement factor.

8.2 Hidden photon search with a tuner

Absence of a magnetic field in hidden photon search simplifies the experiment significantly.

We can use the high quality factor cavities with Q > 1010, much larger than the dark matter

broadening of Q = 106. Due to the narrow cavity linewidth and macroscopic occupation

number of the dark matter field, we only need to sample the dark matter a couple of times

per linewidth. It means an entire octave in frequency can be covered with only 106 tunings.

In a tunable cavity, the QND interaction between the cavity and the qubit is unchanged.

We follow the same experimental protocols at each tuning provided the dispersive shift is

sufficiently large enough to resolve individual photons and the qubit is far detuned. One

such element that we have discussed earlier, a SQUID loop, is capable of tuning the cavity

frequency by varying the magnetic flux threading the loop. Fang Zhao and Morgan Lynn

are currently measuring a prototype which consists of a SQUID loop (tuner) coupled to the
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single photon counter device. The simulations predict a tuning of the order O(100MHz),

set by the coupling strength g. It is set such that the cavity photons loss is not significantly

enhanced by the presence of a tuner. In addition to this, the hybridization of the tuner and

cavity results in a reduction of geometric overlap between the dark matter field and cavity

field. On resonance, half of the field resides in the tuner which has no coupling to the dark

matter, but, the tuning is worth taking the hit in coupling efficiency.

   

Figure 8.1: Electrical cavity tuning with a Josephson junction. The device consists of
two coffin style 3D superconducting cavities, a photon counter transmon qubit and a SQUID
loop to tune the storage cavity frequency. All the individual components are labeled. Both,
the readout and storage cavity are dispersively coupled to a fixed frequency transmon qubit.
The long sapphire chip contains a 3 pole low-pass filter to prevent the storage cavity photons
from leaking due to its coupling via the SQUID loop.

8.3 Rydberg atoms as single photon counter

Superconducting qubits are well behaved at frequencies < 10GHz, however, going to higher

frequencies will be a challenge as the aluminum Josephson junctions are limited by their

plasma oscillation frequency to operate only well below 40GHz. Niobium qubits could in

principle operate at higher frequencies though the complicated oxide physics of Niobium

make this a difficult material to work with. In contrast, Rydberg atoms do not face these
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limitation and could in principle work as single photon sensors at very high frequencies. In

fact, the very first demonstration of photon counter was demonstrated in the quantum-optics

setup using Rydberg atoms51,116. Another important feature is the possibility of probing

the axion cavity with atoms placed directly inside the cavity volume. This work is currently

underway at Yale in Maruyama lab.
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Chapter 9

Conclusion

SQuAD is an excellent example of a fruitful collaboration between two seemingly disparate

fields, coming together to explore new physics. Recent advancements in the quantum infor-

mation field has paved the way to enable new detector technologies based on the manipulation

of laws of quantum mechanics to use them to to our advantage.

As the size of quantum processors powered by qubits grows, it is very crucial to un-

derstand the errors caused by thermal effects and other background sources. The qubit

based photon counting technique demonstrated in this work can be used as a primary ther-

mometer to assess the contamination of quantum information stored in memories39,117.

Recently, a couple of experiments investigated the effects of ionizing radiation on the qubit

substrate118–120. The absorption of high energy radiation such as γ-rays or cosmic-ray muons

generate phonon-mediated quasi-particles causing chip-wide failure. This exchange of ideas

and transfer of technology is a two-way street and the qubit community could definitely use

the expertise possessed by high energy physicists to mitigate these effects and protect the

quantum information encoded on a large array of qubits. For example, experiments are un-

derway at Fermilab to test a multi-qubit chip in a dilution refrigerator situated deep below

the ground level to shield it from the ionizing radiations. Moreover, the material research

spurred by new cavity fabrication methods will lead to novel materials positively impacting

the axion search.

The widespread use of Josephson Parametric Amplifiers made out of superconducting ma-

terials has already benefited the dark matter searches in more than one ways23,25. However,

the search in GHz frequency range will be nearly impossible without the photon counting

based sensors. This technique allows us to evade the limited posed by quantum mechanics

and selectively extract the information required to, in principle, conduct a background free

search. The qubit based photon counting demonstrated in this work reduces the noise by a
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factor > 1000 below the conventional methods. In addition to that, we demonstrated the

enhancement of weak signal by preparing Fock states in the cavity utilizing the non-linearity

inherited from the qubit. Combining these two, results in a SNR improvement of 19.7dB,

speeding up the dark matter search by a factor of 10, 000.

The successful demonstration of quantum limited amplification for axion searches at

higher frequencies paves the way for current experiments to start exploring this parame-

ter space which can be covered in a reasonable amount of time. There are various other

interesting projects which are on-going to cover a wide frequency range utilizing quantum

enhanced techniques. And I cannot wait to hear interesting results coming out soon (or

even dark matter discovery)! I am very grateful to have been part of this cross-disciplinary

research and contribute a few ingredients to the tool-kit. I hope these techniques will be

further developed and coherently put together to uncover one of the greatest mysteries of

the universe.
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[118] Vepsäläinen, A. P. et al. Impact of ionizing radiation on superconducting qubit
coherence. Nature 584, 551–556 (2020). URL https://doi.org/10.1038/

s41586-020-2619-8.

[119] McEwen, M. et al. Resolving catastrophic error bursts from cosmic rays in large
arrays of superconducting qubits. Nature Physics 18, 107–111 (2021). URL https:

//doi.org/10.1038/s41567-021-01432-8.

[120] Wilen, C. D. et al. Correlated charge noise and relaxation errors in supercon-
ducting qubits. Nature 594, 369–373 (2021). URL https://doi.org/10.1038/

s41586-021-03557-5.

179

https://cds.cern.ch/record/2718002
https://doi.org/10.1016/j.nima.2020.164641
2201.04223v1
https://doi.org/10.1088/1748-0221/12/10/p10023
https://doi.org/10.1088/1748-0221/12/10/p10023
https://doi.org/10.1016/0022-3697%2859%2990038-1
https://doi.org/10.1016/0022-3697%2859%2990038-1
https://doi.org/10.1063/5.0037857
https://doi.org/10.1063/5.0037857
https://doi.org/10.1016/b978-0-12-470951-5.50007-x
https://doi.org/10.1016/b978-0-12-470951-5.50007-x
https://doi.org/10.1103/prxquantum.2.040350
https://doi.org/10.1103/prxquantum.2.040350
https://doi.org/10.1103/revmodphys.85.1083
https://doi.org/10.1103/revmodphys.85.1083
https://doi.org/10.1038/s41467-017-02046-6
https://doi.org/10.1038/s41467-017-02046-6
https://doi.org/10.1038/s41586-020-2619-8
https://doi.org/10.1038/s41586-020-2619-8
https://doi.org/10.1038/s41567-021-01432-8
https://doi.org/10.1038/s41567-021-01432-8
https://doi.org/10.1038/s41586-021-03557-5
https://doi.org/10.1038/s41586-021-03557-5

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Detecting Dark matter in the lab
	Thesis Overview

	Dark matter and axion cosmology
	Axion and hidden photons
	Interaction with Axions
	Interaction with hidden photons
	Direction detection of dark matter
	Expected signal due to dark matter
	Detection principle

	Current Challenges
	Our Approach

	Superconducting devices
	Introduction
	Non-linear oscillator
	Design and Fabrication
	Coupling transmon with a microwave cavity
	Coupling to the outside world
	Microwave control electronics
	Amplification chain

	Qubit readout and characterization
	Cavity state control and measurement
	Selective-on Number Arbitrary Phase (SNAP) gate
	Numerical optimisation methods to create quantum states 

	Josephson Parametric Amplifier
	principle of operation
	Design and Fabrication
	Test and Characterization


	Noise temperature measurement
	Sources of noise and their limits
	Calibration of noise temperature
	Y-factor method (Hot-cold load method)
	Primary thermometer
	Qubit as a thermometer


	Single Photon Counter
	Meet the device
	Quantum Non-demolition interaction
	Repeated measurement protocol
	Hidden Markov Model Analysis
	Reconstructing the cavity state
	Likelihood test
	Testing the HMM with real events
	No photon in the cavity
	One photon in the cavity

	Detector Characterization
	Metrological Gain
	Mysterious Background Photons
	Hidden Photon Search
	Search protocol with photon counting
	Computing the expected signal rate
	Calculating 90% confidence limit
	Hidden photon parameter space exclusion

	Measurement optimization
	Josephson Parametric Amplifier
	Optimal readout shape pulse
	Linear filter/optimal integration weights
	Active reset of the qubit

	Summary

	Enhancement of weak signal with stimulated emission
	Signal Enhancement with Stimulated Emission
	Treating dark matter wave as a classical drive

	Preparing Non-classical States in the Cavity
	Stimulated emission protocol
	HMM for stimulated emission
	Examples of the HMM in action
	Signature of enhancement with Fock states

	Hidden photon search
	Kinetic mixing angle exclusion

	Summary

	Photonic Bandgap Axion Haloscope
	Introduction
	What is a Photonic Bandgap (PBG)?
	Why do we need a photonic bandgap?

	Computing the bandgap
	Computational tools
	Defect as a cavity

	Woodpile with an omni-directional bandgap
	Bragg Fiber
	Tapered dielectric shells
	Conical taper in metal end-caps

	Tuning the cavity mode
	Preparing for science run
	Projected sensitivity to axions
	Axion data collection

	Summary

	Future Dark Matter Search
	Axion search with qubits
	Hidden photon search with a tuner
	Rydberg atoms as single photon counter

	Conclusion
	References

